CURRENT/TRANSIMPEDANCE AMPLIFIERS

Ultra-Low-Noise Amplifiers

For High-Speed Precision Measurements

CURRENT AMPLIFIERS

VOLTAGE AMPLIFIERS

GHZ-WIDEBAND
AMPLIFIERS

PHOTORECEIVERS

LOCK-IN AMPLIFIERS

ACCESSORIES

DDPCA-300 Variable Gain Ultra-Low-Noise Current Amplifier

- 0.4 fA peak-to-peak noise
- Variable transimpedance gain from 10^{4} to $10^{13} \mathrm{~V} / \mathrm{A}$
- 240 dB dynamic range for sub-fA to mA measurements
- Adjustable bias voltage
- Compact and highly EMI-shielded case for use close to the signal source
- Manual and remote control

APPLICATIONS

Photo and ionization detector amplifier | I/V characterization of MOS and JFET structures | measurement of ultra-low currents | Quantum and biotech experiments | Spectroscopy | High resistance measurements | Easy-to-use FEMTO ${ }^{\circledR}$ amplifier add-on to existing digital voltmeter or A / D converter

DLPCA-200 Variable Gain Low-Noise Current Amplifier

- Variable transimpedance gain from 10^{3} to $10^{11} \mathrm{~V} / \mathrm{A}$
■ Input noise down to $4.3 \mathrm{fA} / \mathrm{JHz}$
- Bandwidth up to 500 kHz

■ Rise time down to 700 ns

- Adjustable bias voltage
- Manual and remote control

APPLICATIONS

Photodetector amplifier | Scanning tunneling microscopy (STM) | Spectroscopy | Beam monitoring for particle accelerators/synchrotrons | Ionization detectors | Preamplifier for lock-ins, A/D converters, etc.

DHPCA-100 Variable Gain High-Speed Current Amplifier

- Variable transimpedance gain from 10^{2} to $10^{8} \mathrm{~V} / \mathrm{A}$

■ Bandwidth up to 200 MHz

- Rise time down to 1.8 ns
- Adjustable bias voltage
- Manual and remote control

APPLICATIONS
Photodetector amplifier | Fast ionization detection | Spectroscopy | Preamplifier for oscilloscopes, A/D converters and RF lock-in amplifiers

DDPCA-300 Sub-Femto Ampere Sensitivity

Model	DDPCA-300									
Transimpedance [V/A]	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}	10^{12}	10^{13}
Bandwidth* (-3 dB) [Hz]	400	400	400	400	150	150	20	20	1	1
Rise Time* (10 \% - 90 \%) [ms]	0.8	0.8	0.8	0.8	2.3	2.3	17	17	350	350
Equ. Input Noise [// Hz]	45 pA	45 pA	0.45 pA	0.45 pA	15 fA	15 fA	1.3 fA	1.3 fA	0.2 fA	0.2 fA
Accuracy	Transimpedance (Gain) ± 1 \%									
Low Pass Filter	3 settings: full bandwidth, 0.7 Hz and 0.1 Hz									
Output Range	$\pm 10 \mathrm{~V}, \pm 30 \mathrm{~mA}$									
Bias Voltage Range	$\pm 10 \mathrm{~V}$, max. 10 mA , connected to amplifier input, adjustable by trimpot or remote control voltage									
Power Supply	$\pm 15 \mathrm{~V},+70 \mathrm{~mA} /-15 \mathrm{~mA}$ typ.									
Control Interface	4 opto-isolated digital inputs, TTL/CMOS compatible, analog voltage input for bias control									
Case	$170 \times 60 \times 45 \mathrm{~mm}$ (L x W x H), weight 320 g (0.74 lbs)									

* The values for bandwidth, rise time and integrated input noise stated in the table above are achieved with the low pass filter set to full bandwidth. Lower noise values can be achieved by setting the low pass filter to 0.7 Hz or 0.1 Hz . The minimum of 0.4 fA peak-to-peak noise is achieved in the gain settings 10^{12} and $10^{13} \mathrm{~V} / \mathrm{A}$ with the low pass filter set to 0.1 Hz .
Offset adjustable by potentiometer. Overload indication by LED and digital control output. Input protected against $\pm 2 \mathrm{kV}$ transients. Output short-circuit protected. Power supply via 3 -pin Lemo $®$ socket a mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet or contact FEMTO ${ }^{\circledR}$.

DLPCA-200 Broad Application Range

Model	DLPCA-200													
Performance Range	Low Noise							High Speed						
Transimpedance [V/A]	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}
Bandwidth (-3 dB) [kHz$]$	500	500	400	200	50	7	1.1	500	500	400	200	50	7	1.1
Rise Time (10\% - 90 \%)	700 ns	700 ns	900 ns	1.8 us	$7 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	$300 \mu \mathrm{~s}$	700 ns	700 ns	900 ns	$1.8 \mu \mathrm{~s}$	$7 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	300 ¢s
Equ. Input Noise [/ $/ \mathrm{Hz}$]	20 pA	2.3 pA	450 fA	130 fA	43 fA	13 fA	4.3 fA	13 pA	1.8 pA	440 fA	130 fA	43 fA	13 fA	4.3 fA
Accuracy	Transimpedance (Gain) ± 1 \%													
Low Pass Filter	2 settings: full bandwidth and 10 Hz													
Output Range	$\pm 10 \mathrm{~V}, \pm 30 \mathrm{~mA}$													
Bias Voltage Range	$\pm 10 \mathrm{~V}$, max. 22 mA , connected to shield of BNC input socket, switchable to GND													
Power Supply	$\pm 15 \mathrm{~V},+120 \mathrm{~mA} /-80 \mathrm{~mA}$ typ.													
Control Interface	5 opto-isolated digital inputs, TTL/CMOS compatible, analog voltage input for offset control													
Case	$170 \times 60 \times 45 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight $320 \mathrm{~g}(0.74 \mathrm{lbs})$													

Offset adjustable by potentiometer or external control voltage. LED overload indication. Input protected against $\pm 3 \mathrm{kV}$ transients. Output short-circuit protected. Power supply via 3 -pin Lemo ${ }^{\circledR}$ socket, a mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet or contact FEMTO ${ }^{\circledR}$.

DHPCA-100 MHz Speed

Model	DHPCA-100											
Performance Range	Low Noise						High Speed					
Transimpedance [V/A]	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
Bandwidth (-3 dB) [MHz]	200	80	14	3.5	1.8	0.22	175	80	14	3.5	1.8	0.22
Rise Time (10\% - 90 \%)	1.8 ns	4.4 ns	25 ns	$0.1 \mu \mathrm{~s}$	0.2 ¢	$1.6 \mu \mathrm{~s}$	2.0 ns	4.4 ns	25 ns	$0.1 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	1.6 ¢
Equ. Input Noise [/ $/ \mathrm{Hz}$]	220 pA	17 pA	2.2 pA	490 fA	140 fA	51 fA	155 pA	6.1 pA	1.5 pA	440 fA	140 fA	51 fA
Accuracy	Transimpedance (Gain) ± 1 \%											
Low Pass Filter	3 settings: full bandwidth, 10 MHz and 1 MHz											
Output Range	$\pm 1 \mathrm{~V} @ 50 \Omega \mathrm{load}$											
Bias Voltage Range	$\pm 10 \mathrm{~V}$, max. 22 mA , connected to BNC-shield, switchable to GND											
Power Supply	$\pm 15 \mathrm{~V},+110 \mathrm{~mA} /-90 \mathrm{~mA}$											
Control Interface	7 opto-isolated digital inputs, TTL/CMOS compatible, analog voltage input for offset control											
Case	$170 \times 60 \times 45 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight $320 \mathrm{~g}(0.74 \mathrm{lbs})$											

LCA Series Ultra Low-Noise Current Amplifier

- Input noise down to $180 \mathrm{aA} / \sqrt{ } \mathrm{Hz}$

■ Bandwidth up to 400 kHz

- Gain up to $10^{13} \mathrm{~V} / \mathrm{A}$
- Flat frequency response
- EMI-shielded case

Model	$-3 \mathrm{~dB}$ Bandwidth (DC ...)	Noise Current [/ $\sqrt{ } \mathrm{Hz}$]	Transimpedance (Gain)	Rise/Fall Time
LCA-2-10T	2 Hz	0.18 fA	10^{12} and $10^{13} \mathrm{~V} / \mathrm{A}$	200 ms
LCA-30-1T	30 Hz	0.5 fA	$1 \times 10^{12} \mathrm{~V} / \mathrm{A}$	12 ms
LCA-30-200G	30 Hz	0.5 fA	$2 \times 10^{11} \mathrm{~V} / \mathrm{A}$	12 ms
LCA-200-100G	200 Hz	1.5 fA	$1 \times 10^{11} \mathrm{~V} / \mathrm{A}$	2 ms
LCA-200-10G	200 Hz	1.5 fA	$1 \times 10^{10} \mathrm{~V} / \mathrm{A}$	2 ms
LCA-1K-5G	1 kHz	3 fA	$5 \times 10^{9} \mathrm{~V} / \mathrm{A}$	$400 \mu \mathrm{~s}$
LCA-2K-2G	2 kHz	4.5 fA	$2 \times 10^{9} \mathrm{~V} / \mathrm{A}$	$200 \mu \mathrm{~s}$
LCA-4K-1G	4 kHz	6.5 fA	$1 \times 10^{9} \mathrm{~V} / \mathrm{A}$	$100 \mu \mathrm{~s}$
LCA-10K-500M	10 kHz	10 fA	$5 \times 10^{8} \mathrm{~V} / \mathrm{A}$	$40 \mu \mathrm{~s}$
LCA-20K-200M	20 kHz	14 fA	$2 \times 10^{8} \mathrm{~V} / \mathrm{A}$	$20 \mu \mathrm{~s}$
LCA-40K-100M	40 kHz	19 fA	$1 \times 10^{8} \mathrm{~V} / \mathrm{A}$	$10 \mu \mathrm{~s}$
LCA-100K-50M	100 kHz	30 fA	$5 \times 10^{7} \mathrm{~V} / \mathrm{A}$	$4 \mu \mathrm{~s}$
LCA-200K-20M	200 kHz	40 fA	$2 \times 10^{7} \mathrm{~V} / \mathrm{A}$	$2 \mu \mathrm{~s}$
LCA-400K-10M	400 kHz	65 fA	$1 \times 10^{7} \mathrm{~V} / \mathrm{A}$	$1 \mu \mathrm{~s}$

APPLICATIONS

Photodetector amplifier | Spectroscopy | Scanning tunneling microscopy (STM) | Ionization detectors | Pyro- and piezoelectric detectors

NOTE: Bandwidth and frequency response are independent of detector capacitance. Guaranteed and 100% tested up to 10 nF for each amplifier (up to 1 nF for LCA-400K-10M).
Output voltage $\pm 10 \mathrm{~V} @>10 \mathrm{k} \Omega$ load. Offset adjustable by trimpot. Output short-circuit protected. Power supply via 3 -pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet or contact FEMTO ${ }^{\circledR}$

HCA Series High-Speed Current Amplifier

- Input noise down to $270 \mathrm{fA} / \mathrm{VHz}$

■ Bandwidth up to 400 MHz

- Gain up to $10^{6} \mathrm{~V} / \mathrm{A}$
- Flat frequency response
- Stabilized and adjustable bias voltage output for biasing external photodiodes
- EMI-shielded case

APPLICATIONS

Fast detection with large area photodiodes | Spectroscopy | Photodetection with PMTs and photodiodes | Ionization detectors | Pyro- and piezoelectric detectors

Model	$-3 \mathrm{~dB}$ Band- width (DC ...)	Noise Current [/VHz]	Transimpedance (Gain)	Rise/ Fall Time	Max. Source Capaci- tance
HCA-1M-1M	1 MHz	270 fA	$1 \times 10^{6} \mathrm{~V} / \mathrm{A}$	350 ns	50 pF
HCA-1M-1M-C	1 MHz	3.5 pA	$1 \times 10^{6} \mathrm{~V} / \mathrm{A}$	350 ns	2 nF
HCA-2M-1M	2 MHz	340 fA	$1 \times 10^{6} \mathrm{~V} / \mathrm{A}$	180 ns	25 pF
HCA-2M-1M-C	2 MHz	3.5 pA	$1 \times 10^{6} \mathrm{~V} / \mathrm{A}$	180 ns	1 nF
HCA-4M-500K	4 MHz	490 fA	$5 \times 10^{5} \mathrm{~V} / \mathrm{A}$	90 ns	15 pF
HCA-4M-500K-C	4 MHz	3.5 pA	$5 \times 10^{5} \mathrm{~V} / \mathrm{A}$	90 ns	500 pF
HCA-10M-100K	10 MHz	1.1 pA	$1 \times 10^{5} \mathrm{~V} / \mathrm{A}$	35 ns	15 pF
HCA-10M-100K-C	10 MHz	3.5 pA	$1 \times 10^{5} \mathrm{~V} / \mathrm{A}$	35 ns	150 pF
HCA-20M-100K-C	20 MHz	3.5 pA	$1 \times 10^{5} \mathrm{~V} / \mathrm{A}$	18 ns	50 pF
HCA-40M-100K-C	40 MHz	3.7 pA	$1 \times 10^{5} \mathrm{~V} / \mathrm{A}$	10 ns	30 pF
HCA-100M-50K-C	100 MHz	3.8 pA	$5 \times 10^{4} \mathrm{~V} / \mathrm{A}$	3.5 ns	20 pF *
HCA-200M-20K-C	200 MHz	4.9 pA	$2 \times 10^{4} \mathrm{~V} / \mathrm{A}$	1.9 ns	8 pF *
HCA-400M-5K-C	400 MHz	21 pA	$5 \times 10^{3} \mathrm{~V} / \mathrm{A}$	1 ns	10 pF *

Output voltage $\pm 1.5 \mathrm{~V}$, @ 50Ω load. Offset adjustable by trimpot. Output short-circuit protected. Adjustable bias-output ($-12 \mathrm{~V} \ldots+12 \mathrm{~V}$) for biasing photodetectors. Power supply via 3 -pin Lemo ${ }^{\oplus}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

NOTE: The maximum detector capacitance listed above means that up to this value the specified $-3 d B$-bandwidth ($\pm 15 \%$) is guaranteed. Larger capacitances are also possible, but will slightly influence the bandwidth and frequency response.

* For the ultra fast models HCA-100M-50K-C, HCA-200M-20K-C and HCA-400M-5K-C a reduction in bandwidth up to 25% of the nominal values might occur if the source capacitance reaches the above noted maximum source capacitance values. Especially for these models short cables at the input and the use of low capacitance sources is of major importance. For further information please view the datasheet or contact FEMTO ${ }^{\circledR}$.

VOLTAGE AMPLIFIERS
Variable Gain Wideband Amplifiers

CURRENT AMPLIFIERS

VOLTAGE AMPLIFIERS

GHZ-WIDEBAND
AMPLIFIERS

PHOTORECEIVERS

LOCK-IN AMPLIFIERS

ACCESSORIES

■ Bandwidth DC to 100 or 200 MHz independent of chosen gain setting

- Variable gain from 10 to 60 dB ($\times 3$ to $\times 1,000$)
- Input noise $2.3 \mathrm{nV} / \mathrm{VHz}$
- DC drift only $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- True DC coupling, switchable to AC
- Switchable 10 or 20 MHz low pass filter for minimizing wide band noise
- Local and remote control

APPLICATIONS

Oscilloscope and transient recorder preamplifier | Photomultiplier amplifier | Signal booster for optical receivers and current amplifiers | Time-resolved pulse and transient measurements | Automated measurement systems

HVA Series Wideband Voltage Amplifiers

APPLICATIONS

Oscilloscope and transient recorder preamplifier | Photomultiplier and microchannel plate amplifier | Time-resolved pulse and transient
 measurements | Amplification of digital signals (no baseline shift at any digital code)

DLPVA Series Low-Frequency Voltage Amplifiers

■ Bandwidth DC to 100 kHz

- Variable gain up to 100 dB ($\times 100,000$)
■ Input noise down to $0.4 \mathrm{nV} / \mathrm{VHz}$
- DC-drift down to $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- True DC coupling, switchable to AC
- Input impedance up to $1 \mathrm{~T} \Omega$
- Local and remote control

APPLICATIONS
Universal low-frequency amplifier | Automated measurements | Industrial sensors | Detector preamplifier | Integrated measurement systems

DHPVA Series Reference Class from DC to 200 MHz

Model	DHPVA-101	DHPVA-201
Lower Cut-Off Frequency	DC/10 Hz, switchable	DC/10 Hz, switchable
Upper Cut-Off Frequency	10/100 MHz, switchable	20/200 MHz, switchable
Gain [dB]	10/20/30/40/50/60, switchable	10/20/30/40/50/60, switchable
Input Voltage Noise	$2.3 \mathrm{nV} / \mathrm{VHz}$	$2.3 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Voltage Drift	$0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Input/Output	50Ω, BNC	50 , BNC
Input Return Loss S11	-31 dB @ 100 MHz	-22 dB @ 200 MHz
Output Return Loss S22	-35 dB @ 100 MHz	-30 dB @ 200 MHz
Output Voltage	$\pm 1 \mathrm{~V}$ @ 50Ω	
Monitor Output	DC - 100 kHz monitor output at D-Sub connector, gain of 1	
Digital Control	5 opto-isolated digital inputs, TTL/CMOS compatible	
Power Requirements	$\pm 15 \mathrm{~V}, \pm 120 \mathrm{~mA}$ typ.	
Dimensions	$175 \times 105 \times 45 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight $560 \mathrm{~g}(1.24 \mathrm{lbs})$	

Offset adjustable by trimpot or external control voltage. Indication of selected gain setting by LEDs. Output short-circuit protected. Power supply via 3-pin Lemo ${ }^{\circledast}$ socket. A mating connector is provided with the device. Optional power supply series PS-15 available. For further information please see the datasheet.

The new improved models DHPVA-101 and DHPVA-201 replace the previous models DHPVA-100 and DHPVA-200. They are fully compatible delivering at least the same or better electrical performance The heatsinks may be removed if adequate alternative cooling is provided like mounting the amplifier to a sufficiently large case/rack system.

HVA Series True DC-Coupling with Zero Output Offset

Model	HVA-10M-60-B	HVA-10M-60-F	HVA-200M-40-B	HVA-200M-40-F	HVA-500M-20-B
Lower Cut-Off Frequency	DC/1 kHz	DC/1 Hz	DC/1 kHz	DC/1 Hz	DC
Upper Cut-Off Frequency	10 MHz	10 MHz	200 MHz	200 MHz	500 MHz
Gain [dB]	40/60	40/60	20/40	20/40	20
Input Voltage Noise	$0.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$4.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$1.2 \mathrm{nV} / \mathrm{JHz}$	$4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$3.0 \mathrm{nV} / \mathrm{JHz}$
Input Voltage Drift	$1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Input	50Ω, BNC	1 M , , BNC	50Ω, BNC	1 M , , BNC	50Ω, BNC
Output	50 , BNC	50Ω, BNC	50Ω, BNC	50Ω, BNC	50Ω, BNC
Output Voltage	$\pm 3.5 \mathrm{~V} @ 50 \Omega$	$\pm 3.5 \mathrm{~V} @ 50 \Omega$	$\pm 1 \mathrm{~V}$ @ 50Ω	$\pm 1 \mathrm{~V} @ 50 \Omega$	$\pm 1 \mathrm{~V} @ 50 \Omega$
Power Requirements	$\pm 15 \mathrm{~V}, \pm 70 \mathrm{~mA}$ typ.				
Dimensions	$112 \times 51 \times 33 \mathrm{~mm}$	H), weight 200 g			

Offset adjustable by trimpot. Output short-circuit protected. Power supply via 3-pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

DLPVA Series High Gain up to 100 dB

Model	DLPVA-100-BUN-S	DLPVA-100-BLN-S	DLPVA-100-B-S	DLPVA-100-B-D	DLPVA-100-F-S	DLPVA-100-F-D
Input stage	Single ended, bipolar	Single ended, bipolar	Single ended, bipolar	True diff., bipolar	Single ended, FET	True diff., FET
Input	$1 \mathrm{k} \Omega$, BNC	$1 \mathrm{M} \Omega$, BNC	$1 \mathrm{M} \Omega$, BNC	1 M , Lemo ${ }^{\text {® }}$	1 TQ, BNC	1 T , Lemo ${ }^{\text {® }}$
Typical Source Impedance	$<50 \Omega$	<100 Ω	$<1 \mathrm{k} \Omega$	$<1 \mathrm{k} \Omega$	$<1 \mathrm{G} \Omega$	$<1 \mathrm{G} \Omega$
Lower Cut-Off Frequency	1.5 Hz (AC only)	DC/1.5 Hz				
Upper Cut-Off Frequency	$1 / 100 \mathrm{kHz}$					
Gain [dB]	40/60/80/100	40/60/80/100	20/40/60/80	20/40/60/80	20/40/60/80	20/40/60/80
Input Voltage Noise	$0.4 \mathrm{nV} / \mathrm{JHz}$	$0.7 \mathrm{nV} / \mathrm{JHz}$	$2.4 \mathrm{nV} / \mathrm{JHz}$	$3.6 \mathrm{nV} / \mathrm{JHz}$	$5.5 \mathrm{nV} / \mathrm{JHz}$	$6.9 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Voltage Drift	-	$0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$0.7 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$0.7 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
CMRR	-	-	-	120 dB max.	-	120 dB max.
Output	$<100 \Omega, \mathrm{BNC}$ (terminate with > $10 \mathrm{k} \Omega$ load for best performance)					
Output Voltage	$\pm 10 \mathrm{~V}$ (@ > $10 \mathrm{k} \Omega$ load)					
Digital Control	3 or 4 digital inputs and 1 digital output, opto-isolated, TTL/CMOS compatible					
Power Requirements	$\pm 15 \mathrm{~V}, \pm 75 \mathrm{~mA}$ typ.					
Dimensions	$175 \times 51 \times 34 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight 320 g (0.7 lbs)					

Offset adjustable by trimpot or external control voltage. Indication of selected gain setting by LED. Output short-circuit protected. Power supply via 3 -pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

- Wide dynamic range up to 80 dB

■ DC coupled, rectifying* input

- Switchable input range from $\pm 20 \mu \mathrm{~V}$ to $\pm 200 \mathrm{mV}$ and from $\pm 200 \mu \mathrm{~V}$ to $\pm 2 \mathrm{~V}$
- Rise/fall time 5 ns
- Input noise $2 \mathrm{nV} / \mathrm{VHz}$
- Local and remote control
- Integrated sample and hold baseline correction

APPLICATIONS
LIDAR systems | Signal compression | Time-resolved pulse and transient measurements | Mass spectroscopy | Particle detection

[^0][^1]GHZ-WIDEBAND AMPLIFIERS
Suitable as Current and Voltage Amplifiers

CURRENT AMPLIFIERS

VOLTAGE AMPLIFIERS

GHZ-WIDEBAND AMPLIFIERS

PHOTORECEIVERS

LOCK-IN AMPLIFIERS

ACCESSORIES

■ Variable gain up to 70 dB (approx. $\times 3000$), switchable in 10 dB steps

- Bandwidth 1 kHz to 1.2 GHz
- Bandwidth independent of gain setting (guaranteed)
■ Noise figure down to 1.9 dB ($330 \mathrm{pV} / \mathrm{VHz}$)
- Local and remote gain control

APPLICATIONS

Oscilloscope and transient recorder preamplifier | Photomultiplier and microchannel plate amplifier | Signal booster for optical receivers and current amplifiers | Time-resolved pulse and transient measurements | Automated measurement systems

Model	DUPVA-1-60	DUPVA-1-70
Lower Cut-Off-Frequency	1 kHz	1 kHz
Upper Cut-Off-Frequency	1.2 GHz	1.1 GHz
Rise/Fall Time	380 ps	390 ps
Gain	20/30/40/50/60 dB	30/40/50/60/70 dB
Input Noise	NF $3.0 \mathrm{~dB}(450 \mathrm{pV} / \mathrm{VHz})$	NF $1.9 \mathrm{~dB}(330 \mathrm{pV} / \mathrm{VHz})$
Output Power	13 dBm (-1 dB compression @ 100 MHz)	12 dBm (-1 dB compression @ 100 MHz)
Power Requirements	$\pm 15 \mathrm{~V},+350 \mathrm{~mA} /-100 \mathrm{~mA}$, typ.	$\pm 15 \mathrm{~V},+250 \mathrm{~mA} /-100 \mathrm{~mA}$, typ.
Input/Output	50Ω, SMA connector	
Monitor Output	DC - 100 kHz monitor output at D-Sub connector, gain of 1	
Control Interface	3 opto-isolated digital inputs, TTL/CMOS compatible	
Dimensions	$165 \times 105 \times 45 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight $510 \mathrm{~g}(1.1 \mathrm{lbs})$	

Indication of selected gain setting by LED. Output short-circuit protected. Power supply via 3-pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

TYPICAL PERFORMANCE
CHARACTERISTICS

- Bandwidth independent of gain setting (guaranteed), see figure: DUPVA-1-70 gain vs. frequency
- Upper cut-off frequency rolloff: 40 dB/oct.

HSA Series High-Speed GHz Amplifiers

APPLICATIONS

Preamplifier for ultra-fast detectors (microchannel plates, photomultipliers, avalanche photodiodes and PIN photodiodes) | Oscilloscope and spectrum/network analyzer preamplifier | Time-resolved pulse and transient measurements | Signal booster in 50Ω high-speed systems

- Ultra-wide bandwidth from 10 kHz up to 2.5 GHz
- Gain up to $60 \mathrm{~dB}(\times 1,000)$
- Transimpedance gain with photodetectors up to 50,000 V/A
■ Very low input noise down to $310 \mathrm{pV} / \mathrm{VHz}(6.2 \mathrm{pA} / \mathrm{VHz})$
- Integrated DC-current path for biased photodetector applications

Only HSA-Y series:

- Two identical signal outputs
- DC-monitor output

HSA-X Models	HSA-X-1-40	HSA-X-2-20	HSA-X-2-40	HSA-X-I-2-40
Lower Cut-Off-Frequency	10 kHz	10 kHz	10 kHz	10 kHz
Upper Cut-Off-Frequency	1.2 GHz	2.5 GHz	2.0 GHz	2.2 GHz
Rise/Fall Time	290 ps	140 ps	180 ps	160 ps
Gain	40 dB ($\times 100$)	20 dB ($\times 10$)	40 dB ($\times 100$)	$40 \mathrm{~dB}(\times 100)$ inverting
Transimpedance*	5,000 V/A	$500 \mathrm{~V} / \mathrm{A}$	5,000 V/A	5,000 V/A inverting
Input Noise [/ $/ \mathrm{Hz}]^{* *}$	310 pV (6.2 pA)	$610 \mathrm{pV}(12.2 \mathrm{pA})$	620 pV (12.4 pA)	430 pV (8.6 pA)
Input VSWR	1.6 : 1	1.23 : 1	1.4 : 1	$1.25: 1$
Maximum Output Voltage @ 50Ω	$2 \mathrm{~V}_{\text {PP }}$	$2 \mathrm{~V}_{\text {PP }}$	$1.9 \mathrm{~V}_{\mathrm{PP}}$	$2 \mathrm{~V}_{\text {PP }}$
Output VSWR	$1.35: 1$	1.4 : 1	2.5 : 1	1.4:1
Power Requirements	+15 V, +140 mA, typ.	+15 V, +105 mA, typ.	+15 V, +125 mA, typ.	+15 V, +140 mA, typ.
Input/Output	50Ω, SMA			
Dimensions	$80 \times 45 \times 25 \mathrm{~mm}$ (Lx	wight $100 \mathrm{~g}(0.23 \mathrm{lb})$		

HSA-Y Models	HSA-Y-1-40	HSA-Y-1-60	HSA-Y-2-20	HSA-Y-2-40
Lower Cut-Off-Frequency	10 kHz	10 kHz	10 kHz	10 kHz
Upper Cut-Off-Frequency	1.0 GHz	1.1 GHz	2 GHz	1.9 GHz
Rise/Fall Time	330 ps	320 ps	175 ps	185 ps
Gain	$40 \mathrm{~dB}(\times 100)$	$60 \mathrm{~dB}(\times 1,000)$	20 dB ($\times 10$)	40 dB ($\times 100$)
Transimpedance*	5,000 V/A	50,000 V/A	$500 \mathrm{~V} / \mathrm{A}$	5,000 V/A
Input Noise [/ $/ \mathrm{Hz}]^{* *}$	330 pV (6.6 pA)	330 pV (6.6 pA)	680 pV (13.6 pA)	650 pV (13 pA)
Input VSWR	1.45 : 1	1.4 : 1	1.15 : 1	1.2 : 1
Maximum Output Voltage @ 50Ω	$2.0 \mathrm{~V}_{\text {PP }}$	$2.3 \mathrm{~V}_{\text {Pp }}$	$2.5 \mathrm{~V}_{\text {pp }}$	$1.7 \mathrm{~V}_{\text {pp }}$
Output VSWR	1.6 : 1	1.4 : 1	2.5 : 1	1.8:1
Power Requirements	$\pm 15 \mathrm{~V},+200 /-10 \mathrm{~mA}$, typ.	$\pm 15 \mathrm{~V},+180 /-10 \mathrm{~mA}$, typ.	$\pm 15 \mathrm{~V},+160 /-10 \mathrm{~mA}$, typ.	$\pm 15 \mathrm{~V},+185 /-10 \mathrm{~mA}$, typ.
Input	50), SMA			
Output	Two identical signal outputs, 50Ω, SMA			
Monitor Output	Gain: 26 dB ($\times 20$), transimpedance*: $1 \mathrm{kV} / \mathrm{A}$, output voltage range: $\pm 10 \mathrm{~V}\left(\mathrm{R}_{\text {Load }}>10 \mathrm{kS}\right)$, bandwidth: $\mathrm{DC}-100 \mathrm{kHz}$			
Dimensions	$110 \times 70 \times 25 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight $180 \mathrm{~g}(0.41 \mathrm{lb})$			

* Transimpedance $=$ Gain $\times 50 \Omega$ (Input Impedance)
${ }^{\star *}$ Input Noise Current $=$ Input Noise Voltage $\div 50 \Omega$ (Input Impedance)
Integrated DC path for use with photodetectors. 8-32 and M4 mounting threads. Power supply via 3-pin Lemo ${ }^{\otimes}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

FEMTO ${ }^{\circledR}$ Messtechnik GmbH
Klosterstraße 64
10179 Berlin
Germany

P: +49-(0)30-280 4711-0
F: +49-(0)30-280 4711-11
E: info@femto.de
W: www.femto.de

Specifications are subject to change without notice. Information provided herein is believed to be accurate and reliable. However, no responsibility is assumed by FEMTO Messtechnik GmbH for its use, nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of FEMTO Messtechnik GmbH. Product names mentioned may also be trademarks used here for identification purposes only. © 2019 by FEMTO Messtechnik GmbH • All rights reserved. • Printed in Germany.

PHOTORECEIVERS

From Femtowatt Sensitivity to Gigahertz Speed

CURRENT AMPLIFIERS

VOLTAGE AMPLIFIERS

GHZ-WIDEBAND
AMPLIFIERS

PHOTORECEIVERS

LOCK-IN AMPLIFIERS

ACCESSORIES

OE-200 Series Variable Gain Photoreceivers

- Adjustable conversion gain from 10^{3} to $10^{11} \mathrm{~V} / \mathrm{W}$
- Operating range from fW to mW
- Spectral range from 190 to 1700 nm

■ NEP down to $6 \mathrm{fW} / \mathrm{VHz}$
■ Bandwidth up to 500 kHz
■ Rise time down to 700 ns

- Calibration for all fiber optic models
- Manual and remote control

APPLICATIONS

All purpose lab photoreceiver | Fiber alignment systems | Fast power monitoring | Test of laser diode to fiber coupling | Linearity measurements over 10 decades | Calibration of optical communication systems | Time-resolved pulse and power measurements | Industrial control and alignment systems

Model	OE-200-SI	OE-200-UV	OE-200-IN1	OE-200-IN2
Detector Type	Si-PIN	Si-PIN	InGaAs-PIN	InGaAs-PIN
Detector Size	$\emptyset 1.2 \mathrm{~mm}$	$1.1 \times 1.1 \mathrm{~mm}^{2}$	$\emptyset 0.3 \mathrm{~mm}$ (FC: $\emptyset 0.08 \mathrm{~mm}$)	$\emptyset 0.3 \mathrm{~mm}$ (FC: $\emptyset 0.08 \mathrm{~mm}$)
Spectral Range	320-1060 nm	190-1000 nm	900-1700 nm	900-1700 nm
Calibration Wavelength*	850 nm	850 nm	1310 nm	1550 nm
Input Options	FST, FS, FC	FST, FS, FC	FST, FS, FC	FST, FS, FC
NEP (Dependent on Gain Setting)	$8 \mathrm{fW} / \mathrm{JHz}-33 \mathrm{pW} / \sqrt{\mathrm{Hz}}$	$17 \mathrm{fW} / \mathrm{J} / \mathrm{Hz}-60 \mathrm{pW} / \mathrm{JHz}$	$7 \mathrm{fW} / \mathrm{JHz}-22 \mathrm{pW} / \sqrt{\mathrm{Hz}}$	$6 \mathrm{fW} / \mathrm{JHz}-22 \mathrm{pW} / \sqrt{\mathrm{Hz}}$
Useful Operating Range	ca. $100 \mathrm{fW}-2 \mathrm{~mW}$	ca. $200 \mathrm{fW}-2 \mathrm{~mW}$	ca. $100 \mathrm{fW}-2 \mathrm{~mW}$	ca. $100 \mathrm{fW}-2 \mathrm{~mW}$

The following characteristics are valid for all models:

Performance Range	Low Noise							High Speed						
Conversion Gain [V/W]**	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}
Bandwidth (-3 dB) [kHz]	500	500	400	200	50	7	1.1	500	500	400	200	50	7	1.1
Rise Time (10 \% - 90 \%)	700 ns	700 ns	900 ns	1.8 нs	$7 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	300 ¢s	700 ns	700 ns	900 ns	1.8 ¢	$7 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	300 ¢s
Accuracy Performance	$\pm 1 \%$ electrical between settings, $\pm 5 \%$ electro-optical for FC-input, $\pm 15 \%$ electro-optical for FS- and FST-input													
Low Pass Filter	Switchable to 10 Hz													
Output Performance	$\pm 10 \mathrm{~V}$ (@ $\geq 100 \mathrm{kS}$ load)													
Power Requirements	$\pm 15 \mathrm{~V},+110 \mathrm{~mA} /-90 \mathrm{~mA}$ typ.													
Control Interface	5 opto-isolated digital inputs, TTL/CMOS compatible, analog offset control voltage input													
Dimensions	$170 \times 60 \times 45 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight $360 \mathrm{~g}(0.79 \mathrm{lbs})$													

[^2]
Input Options

FST-Input
Free space input with 1.035"-40 threaded flange, internal threaded coupler ring included

FS-Input
Free space input with unthreaded flange (25 mm diameter)

FC-Input
Permanent fiber coupled input

APPLICATIONS

All purpose low-noise photoreceiver (0/E converter) for the MHz range | Time-resolved optical pulse and power measurements | Laser intensity noise measurements (RIN) | Optical front-end for oscilloscopes, spectrum analyzers, A/D converters and RF lock-in amplifiers

- Adjustable transimpedance gain from 10^{2} to $10^{8} \mathrm{~V} / \mathrm{A}$
■ Wide bandwidth up to 200 MHz
- Various Si and InGaAs models cover the 320 to 1700 nm wavelength range
■ High dynamic input range up to 10 mW optical power
- Large optical detector size up to 3 mm diameter
■ Very low noise, NEP down to $47 \mathrm{fW} / \mathrm{JHz}$
- Switchable low pass filters for minimizing wideband noise
- Full manual and remote control capability

Model	0E-300-SI-10	0E-300-SI-30	OE-300-IN-01	OE-300-IN-03
Detector Type	Si-PIN	Si-PIN	InGaAs-PIN	InGaAs-PIN
Detector Size [mm]	1.0×1.0	$\emptyset 3.0$	$\emptyset 0.08$	$\emptyset 0.3$
Spectral Range [nm]	400-1000	320-1000	900-1700	800-1700
Input Options	FST, FS	FST, FS	FC	FST, FS
NEP (Dependent on Gain Setting)	$76 \mathrm{fW} / \mathrm{/Jzz}-322 \mathrm{pW} / \sqrt{\mathrm{Hz}}$	$81 \mathrm{fW} / \mathrm{JHz}-325 \mathrm{pW} / \mathrm{J} \mathrm{Hz}$	$47 \mathrm{fW} / \mathrm{/} \mathrm{~Hz}-180 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$	$52 \mathrm{fW} / \mathrm{JHz}-192 \mathrm{pW} / \mathrm{JHz}$

The following characteristics are valid for all models:

Performance Range	Low Noise					High Speed					
Gain Setting [V/A] (Transimpedance)	$10^{2} \quad 10^{3}$	10^{4}	10^{5}	10^{6}	10^{7}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
Bandwidth (-3 dB) [MHz]	$200(100)^{1} 80(60)^{1}$	14	3.5	1.8	0.22	175 (80) ${ }^{1}$	$80(60)^{1}$	14	3.5	1.8	0.22
Accuracy Performance	$\pm 1 \%$ (transimpedance)										
Low Pass Filter	switchable to 1 MHz and 10 MHz										
Output Performance	$\pm 1 \mathrm{~V}$ (@ 50Ω load), for linear amplification										
Power Requirements	$\pm 15 \mathrm{~V},+150 \mathrm{~mA} /-100 \mathrm{~mA}$ typ.										
Control Interface	5 opto-isolated digital inputs, TTL/CMOS compatible, analog offset control voltage input										
Dimensions	$170 \times 60 \times 45 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight $320 \mathrm{~g}(0.74 \mathrm{lbs})$										

1) model OE-300-SI-30

Offset adjustable by trimpot or external control voltage. LED overload indication. Output short-circuit protected. Power supply via 3 -pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device Optional power supply PS-15 available. For further information please view the datasheet.

[^3]
HBPR-Series Low Noise Balanced Photoreceivers

- Bandwidth up to 500 MHz
- Common-Mode Rejection Ratio (CMRR) up to 55 dB
- Very low noise, NEP down to $3.7 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$
- Si and InGaAs models for spectral range from 320 to 1700 nm
- Switchable 20 MHz low pass filter to minimize wideband noise
- High gain of up to 60,000 V/A, switchable in two stages
- Switchable output coupling (AC/DC)
- Fast DC-coupled monitor outputs with 10 MHz bandwidth
- Input either free space or fiber-coupled
- 1.035 "-40 threaded free space input, compatible with many standard optical systems

APPLICATIONS

Optical spectroscopy | Coherent heterodyne detection \| Homodyne detection of optical quantum states | Optical coherence tomography (OCT) | Interferometric measurements \| Optical delay measurements \| Differential optical front end for oscilloscopes, spectrum analyzers, A/D converters and lock-in amplifiers

Input Options

Free space input with1.035"-40 threaded flange, internal threaded coupler ring included

FS-Input

Free space input with unthreaded flange (25 mm diameter)

FC-Input

Fiber coupled input with fix/permanent FC fiber connector

HBPR models for the spectral range from 320 to 1000 nm :

Model	HBPR-100M-60K-SI-FS HBPR-100M-60K-SI-FST HBPR-100M-60K-SI-FC	HBPR-200M-30K-SI-FS HBPR-200M-30K-SI-FST HBPR-200M-30K-SI-FC	HBPR-500M-10K-SI-FS HBPR-500M-10K-SI-FST HBPR-500M-10K-SI-FC
Si-PIN Photo Diode	$0.8 \mathrm{~mm} \emptyset$	0.8 mm Ø	$0.4 \mathrm{~mm} \emptyset$, FC version with ball lens
Spectral Range	320-1000 nm	320-1000 nm	320-1000 nm
Bandwidth (-3 dB)	DC - 100 MHz	DC - 200 MHz	DC - 500 MHz
Transimpedance Gain (switchable)	$\begin{aligned} & 2.0 \times 10^{4} \mathrm{~V} / \mathrm{A} \\ & 6.0 \times 10^{4} \mathrm{~V} / \mathrm{A} \end{aligned}$	$\begin{aligned} & 1.0 \times 10^{4} \mathrm{~V} / \mathrm{A} \\ & 3.0 \times 10^{4} \mathrm{~V} / \mathrm{A} \end{aligned}$	$\begin{aligned} & 5.0 \times 10^{3} \mathrm{~V} / \mathrm{A} \\ & 1.0 \times 10^{4} \mathrm{~V} / \mathrm{A} \end{aligned}$
Conversion Gain (switchable)	$10.8 \times 10^{3} \mathrm{~V} / \mathrm{W}, 32.4 \times 10^{3} \mathrm{~V} / \mathrm{W}$ (typ. @ 850 nm)	$5.4 \times 10^{3} \mathrm{~V} / \mathrm{W}, 16.2 \times 10^{3} \mathrm{~V} / \mathrm{W}$ (typ. @ 850 nm)	$\begin{aligned} & 2.55 \times 10^{3} \mathrm{~V} / \mathrm{W}, 5.1 \times 10^{3} \mathrm{~V} / \mathrm{W} \\ & \text { (typ. @ } 760 \mathrm{~nm} \text {) } \end{aligned}$
Minimum NEP	$\leq 6.5 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$ (@850 nm)	$\leq 7.8 \mathrm{pW} / \mathrm{VHz}$ (@850 nm)	$\leq 12 \mathrm{pW} / \mathrm{VHz}$ (@760 nm)
NEP (@20 MHz)	$\leq 7.4 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$ (@850 nm)	$\leq 8.8 \mathrm{pW} / \mathrm{JHz}$ (@850 nm)	$\leq 13 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$ (@760 nm)
Common Mode Rejection (typ.)	50 dB	45 dB	40 dB

HBPR-Series Low Noise Balanced Photoreceivers

HBPR models for the spectral range from 800 to 1700 nm :

Model	HBPR-100M-60K-IN-FS HBPR-100M-60K-IN-FST HBPR-100M-60K-IN-FC	HBPR-200M-30K-IN-FS HBPR-200M-30K-IN-FST HBPR-200M-30K-IN-FC	HBPR-450M-10K-IN-FS HBPR-450M-10K-IN-FST HBPR-500M-10K-IN-FC
Si-PIN Photo Diode	$0.3 \mathrm{~mm} \emptyset$ (FS/FST model), $80 \mu \mathrm{~m} \emptyset$, ball lens (FC model)		
Spectral Range	800-1700 nm (FS/FST model), 900-1700 nm (FC model)		
Bandwidth (-3 dB)	DC - 100 MHz	DC - 200 MHz	DC - 450 MHz (FS/FST), DC - 500 MHz (FC)
Transimpedance Gain (switchable)	$\begin{aligned} & 2.0 \times 10^{4} \mathrm{~V} / \mathrm{A} \\ & 6.0 \times 10^{4} \mathrm{~V} / \mathrm{A} \end{aligned}$	$\begin{aligned} & 1.0 \times 10^{4} \mathrm{~V} / \mathrm{A} \\ & 3.0 \times 10^{4} \mathrm{~V} / \mathrm{A} \end{aligned}$	$\begin{aligned} & 5.0 \times 10^{3} \mathrm{~V} / \mathrm{A} \\ & 1.0 \times 10^{4} \mathrm{~V} / \mathrm{A} \end{aligned}$
Conversion Gain (typ. @ 1550nm, switchable)	$\begin{aligned} & 19 \times 10^{3} \mathrm{~V} / \mathrm{W} \\ & 57 \times 10^{3} \mathrm{~V} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 9.5 \times 10^{3} \mathrm{~V} / \mathrm{W} \\ & 28.5 \times 10^{3} \mathrm{~V} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 4.75 \times 10^{3} \mathrm{~V} / \mathrm{W} \\ & 9.5 \times 10^{3} \mathrm{~V} / \mathrm{W} \end{aligned}$
Minimum NEP (@1550 nm)	$\leq 3.7 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$	$\leq 4.4 \mathrm{pW} / \mathrm{VHz}$ (FS/FST) $\leq 4.1 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$ (FC)	$\leq 6.5 \mathrm{pW} / \mathrm{JHz}$ (FS/FST) $\leq 6.7 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$ (FC)
NEP (@ $20 \mathrm{MHz}, 1550 \mathrm{~nm}$)	$\leq 4.3 \mathrm{pW} / \mathrm{VHz}$ (FS/FST) $\leq 4.0 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$ (FC)	$\leq 4.9 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$ (FS/FST) $\leq 4.4 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$ (FC)	$\leq 6.9 \mathrm{pW} / \sqrt{ } \mathrm{Hz}$
Common Mode Rejection (typ.)	$\begin{aligned} & 50 \mathrm{~dB} \text { (FS/FST) } \\ & 55 \mathrm{~dB}(\mathrm{FC}) \end{aligned}$	$\begin{aligned} & 45 \mathrm{~dB} \text { (FSS/FST) } \\ & 50 \mathrm{~dB}(\mathrm{FC}) \end{aligned}$	$\begin{aligned} & 35 \mathrm{~dB}(\mathrm{FS} / \mathrm{FST}) \\ & 45 \mathrm{~dB}(\mathrm{FC}) \end{aligned}$

The following characteristics are valid for all HBPR models:

Max. CW Common Mode Power	10 mW on each photo diode
Low Pass Filter	full bandwidth switchable to 20 MHz (upper cut-off frequency)
High Pass Filter (AC coupling)	DC coupling switchable to AC (10 Hz lower cut-off frequency)
Signal Output Voltage	$\pm 1.0 \mathrm{~V}$ at 50Ω load (for linear gain and low harmonic distortion), maximum $\pm 2.0 \mathrm{~V}$ at 50Ω load
Monitor Outputs	Transimpedance gain $1000 \mathrm{~V} / \mathrm{A}$, bandwidth DC - 10 MHz , output voltage $0 \ldots+10 \mathrm{~V}$ (@ $\geq 100 \mathrm{k} \Omega$ load)
Gain Accuracy	± 1 \% electrical
Max. Optical CW Balanced Power	10 mW on each photodiode
Power Supply Voltage / Current	$\pm 15 \mathrm{~V}(\pm 14.5 \mathrm{~V} \ldots \pm 16.5 \mathrm{~V}),-90 /+120 \mathrm{~mA}$ typ.
Dimensions	$80 \times 80 \times 30,5 \mathrm{~mm}(\mathrm{~L} \times \mathrm{B} \times \mathrm{H})$, weight FC-models $350 \mathrm{~g}(0.77 \mathrm{lbs})$, weight FS/FST-models 410 g (0.9 lbs)

The FST free space SI models with $\emptyset 0.8 \mathrm{~mm}$ photodetectors can easily be converted to a fiber connection (FC, FSMA) thanks to the large detector surface, by simply screwing on one optionally available fiber adapter of the PRA series. For models with smaller detector areas, such as $\emptyset 0.4$ / 0.3 mm , the use of a fiber adapter is only recommended to a limited extent, since coupling losses and instabilities can occur. If the focus is on high-precision fiber optic measurements, using HBPR FC-models with fixed optical fiber input will usually give the best results.

[^4]

■ Wavelength range from 320 to 1700 nm

- Ultra-wide bandwidth from 10 kHz up to 2 GHz
- Max. conversion gain $4.75 \times 10^{3} \mathrm{~V} / \mathrm{W}$
- Min. NEP $11 \mathrm{pW} / \mathrm{VHz}$

APPLICATIONS

Spectroscopy | Fast pulse and transient measurements | Optical triggering | Optical front-end (0/E converter) for oscilloscopes and A/D converters

Model	HSA-X-S-1G4-SI	HSPR-X-I-1G4-SI (inverting)	HSA-X-S-2G-IN	HSPR-X-I-2G-IN (inverting)
Photodiode	Si-PIN, $\emptyset 0.4 \mathrm{~mm}$ (FST, FS), integrated ball lens (FC)		InGaAs-PIN, $\emptyset 0.1 \mathrm{~mm}$ (FST, FS), integrated ball lens (FC)	
Spectral Range	320-1000 nm	320-1000 nm	900-1700 nm	900-1700 nm
Bandwidth (-3 dB)	$10 \mathrm{kHz}-1.4 \mathrm{GHz}$	$10 \mathrm{kHz}-1.4 \mathrm{GHz}$	$10 \mathrm{kHz}-2 \mathrm{GHz}$	$10 \mathrm{kHz}-2 \mathrm{GHz}$
Rise/Fall Time (10\%-90\%)	250 ps	250 ps	180 ps	180 ps
Transimpedance Gain	$5 \times 10^{3} \mathrm{~V} / \mathrm{A}$	$5 \times 10^{3} \mathrm{~V} / \mathrm{A}$ (inverting)	$5 \times 10^{3} \mathrm{~V} / \mathrm{A}$	$5 \times 10^{3} \mathrm{~V} / \mathrm{A}$ (inverting)
Conversion Gain	$2.55 \times 10^{3} \mathrm{~V} / \mathrm{W}$ (@760 nm)	$2.55 \times 10^{3} \mathrm{~V} / \mathrm{W}$ (@ 760 nm)	$4.75 \times 10^{3} \mathrm{~V} / \mathrm{W}$ (@ 1550 nm)	4.75×10^{3} V/W (@ 1550 nm)
NEP (@100 MHz)	$32 \mathrm{pW} / \mathrm{JHz}$ (@ 760 nm)	$19 \mathrm{pW} / \mathrm{JHz}$ (@ 760 nm)	$16 \mathrm{pW} / \mathrm{/Hz}$ (@ 1550 nm)	$11 \mathrm{pW} / \mathrm{/Hz}$ (@1550 nm)
Output VSWR	2.5 : 1	1.4:1	2.5 : 1	1.4:1
Max. Output Voltage @ 50Ω	$1.9 \mathrm{~V}_{\mathrm{PP}}$	$2.0 \mathrm{~V}_{\text {PP }}$	$1.9 \mathrm{~V}_{\text {PP }}$	$2.0 \mathrm{~V}_{\text {PP }}$
Output Noise	3.6 mV $\mathrm{V}_{\text {RSS }}$	$2.5 \mathrm{mV}_{\text {RMS }}$	3.6 mV $\mathrm{V}_{\text {RMS }}$	$2.5 \mathrm{mV}_{\text {Rms }}$
Input Options	FST, FS, FC	FST, FS, FC	FST, FS, FC	FST, FS, FC
Power Requirements	+15 V, 130 mA typ.	+15 V, 150 mA typ.	+15 V, 130 mA typ.	+15 V, 150 mA typ.
Dimensions	$80 \times 42 \times 30 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight 100 g (0.23 lbs)			

Output short-circuit protected. Threaded M4 and $8-32$ mounting holes for use with standard mounting posts. Power supply +15 V via $3-$ pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device Optional power supply PS-15 available. For further information please view the datasheet.

HCA-S-400M Series 400 MHz Photoreceivers

■ Wavelength range from 320 to 1700 nm
■ Bandwidth DC to 400 MHz

- Rise time 1 ns
- Max. conversion gain $4.8 \times 10^{3} \mathrm{~V} / \mathrm{W}$

APPLICATIONS

Spectroscopy | Fast pulse and transient measurements | Optical triggering | Test of digital fiber-optic systems | Optical front-end for oscilloscopes and A/D converters

Model	HCA-S-400M-SI	HCA-S-400M-IN
Photodiode	$0.8 \mathrm{~mm} \emptyset$ Si-PIN	InGaAs-PIN, $\emptyset 0.3 \mathrm{~mm}$ (FST, FS), integrated ball lens (FC)
Spectral Range	320-1000 nm	900-1700 nm
Bandwidth (-3 dB)	DC - 400 MHz	DC - 400 MHz
Rise/Fall Time (10\%-90\%)	1 ns	1 ns
Transimpedance Gain	$5 \times 10^{3} \mathrm{~V} / \mathrm{A}$	$5 \times 10^{3} \mathrm{~V} / \mathrm{A}$
Max. Conversion Gain	$2.7 \times 10^{3} \mathrm{~V} / \mathrm{W}$ (@ 800 nm)	$\begin{aligned} & 4.8 \times 10^{3} \mathrm{~V} / \mathrm{W} \\ & (@ 1550 \mathrm{~nm}) \end{aligned}$
NEP (@ 100 MHz)	$40 \mathrm{pW} / \mathrm{JHz}$ (@ 800 nm)	$24 \mathrm{pW} / \sqrt{\mathrm{Hz}}$ (@ 1550 nm)
Output Noise	3 mV RMS	3 mV RMS
Input Options	FST, FS, FC, SMA	FST, FS, FC
Power Requirements	$\pm 15 \mathrm{~V}, \pm 55 \mathrm{~mA}$ typ.	
Dimensions	$100 \times 51 \times 28 \mathrm{~mm}$, weight $210 \mathrm{~g}(0.5 \mathrm{lbs})$	

[^5]PHOTORECEIVERS

HCA-S-200M Series 200 MHz Photoreceivers

■ Wavelength range from 320 to 1700 nm
■ Bandwidth from DC to 200 MHz

- Max. conversion gain $1.9 \times 10^{4} \mathrm{~V} / \mathrm{W}$

■ Min. NEP 5.2 pW/VHz

APPLICATIONS

Spectroscopy | Fast pulse and transient measurements | Optical triggering | Optical front-end for oscilloscopes, A/D converters and RF lock-in amplifiers

Model	HCA-S-200M-SI	HCA-S-200M-IN
Photodiode	$0.8 \mathrm{~mm} \emptyset$ Si-PIN	InGaAs-PIN, $\emptyset 0.3 \mathrm{~mm}$ (FST, FS), integrated ball lens (FC)
Spectral Range	320-1000 nm	900-1700 nm
Bandwidth (-3 dB)	DC - 200 MHz	DC - 200 MHz
Rise/Fall Time (10\% - 90 \%)	1.8 ns	1.8 ns
Transimpedance Gain	$2 \times 10^{4} \mathrm{~V} / \mathrm{A}$	$2 \times 10^{4} \mathrm{~V} / \mathrm{A}$
Max. Conversion Gain	$1.1 \times 10^{4} \mathrm{~V} / \mathrm{W}$ (@ 800 nm)	1.9×10^{4} V/W (@ 1550 nm)
NEP (@ 10 MHz)	$\begin{aligned} & 9.4 \mathrm{pW} / / \mathrm{Hz} \\ & (@ 800 \mathrm{~nm}) \end{aligned}$	$5.2 \mathrm{pW} / \sqrt{\mathrm{Hz}}$ (@ 1550 nm)
Output Noise	3 mV RMS	4.5 mV RMS
Input Options	FST, FS, FC, SMA	FST, FS, FC
Power Requirements	$\pm 15 \mathrm{~V}, \pm 50 \mathrm{~mA}$ typ.	$\pm 15 \mathrm{~V}, \pm 60 \mathrm{~mA}$ typ.
Dimensions	$105 \times 51 \times 28 \mathrm{~mm}$, weight 210 g (0.5 lbs)	

Output voltage $\pm 1.2 \mathrm{~V}$ (@ 50Ω load) for linear amplification. Offset adjustable by potentiometer. Output short-circuit protected. The photoreceivers with free space input come with threaded M4 and 8-32 mounting holes for use with standard mounting posts. Power supply $\pm 15 \mathrm{~V}$ via 3 -pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

LCA-S-400K Series 400 kHz Photoreceivers

■ Wavelength range from 400 to 1700 nm

- Bandwidth from DC to 400 kHz
- Max. conversion gain $10^{7} \mathrm{~V} / \mathrm{W}$

■ Min. NEP $75 \mathrm{fW} / \sqrt{ } \mathrm{Hz}$

APPLICATIONS

Spectroscopy | General purposes opto-electronic measurements | Optical front-end for oscilloscopes,
A/D converters and lock-in amplifiers

Model	LCA-S-400K-SI	LCA-S-400K-IN
Photodiode	$3.0 \mathrm{~mm} \emptyset$ Si-PIN	$0.5 \mathrm{~mm} \emptyset$ InGaAs-PIN
Spectral Range	400-1100 nm	900-1700 nm
Bandwidth (-3 dB)	DC - 400 kHz	DC - 400 kHz
Rise/Fall Time (10\% - 90 \%)	$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
Transimpedance Gain	$1 \times 10^{7} \mathrm{~V} / \mathrm{A}$	$1 \times 10^{7} \mathrm{~V} / \mathrm{A}$
Max. Conversion Gain	5.9×10^{6} V/W (@ 920 nm)	$9.5 \times 10^{6} \mathrm{~V} / \mathrm{W}$ (@ 1550 nm)
NEP (@ 10 kHz)	$\begin{aligned} & 120 \mathrm{fW} / \mathrm{JHz} \\ & (@ 920 \mathrm{~nm}) \end{aligned}$	$75 \mathrm{fW} / \sqrt{\mathrm{Hz}}$ (@ 1550 nm)
Output Noise	1.6 mV ${ }_{\text {RMS }}$	2 mV RMS
Input Options	FST, FS	FST, FS
Power Requirements	$\pm 15 \mathrm{~V}, \pm 40 \mathrm{~mA}$ typ.	
Dimensions	$100 \times 51 \times 28 \mathrm{~mm}$, weight 210 g (0.5 lbs)	

Output voltage $\pm 10 \mathrm{~V}$ max (@ $100 \mathrm{k} \Omega$ load). Offset adjustable by trimpot. Units with fiber optic input are optionally available. Output short-circuit protected. Threaded M4 and 8-32 mounting holes for use with standard mounting posts. Power supply $\pm 15 \mathrm{~V}$ via 3 -pin Lemo ${ }^{\otimes}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

Mounting options

- The series HSPR-X/HSA-X-S, HCA-S, LCA-S, FWPR and PWPR feature both UNC 8-32 and M4 tapped holes for mounting on metric and imperial threaded standard posts.
■ Optional post adapter plate PRA-PAP adds additional UNC 8-32 and M4 tapped holes to the series 0E, HCA-S, LCA-S, FWPR and PWPR.

FWPR-20 Series Femtowatt Photoreceivers

APPLICATIONS

Fluorescence measurements | Spectroscopy | Electrophoresis | Chromatography | Replacement for photomultiplier tubes (PMTs), avalanche photodiodes (APDs) and liquid nitrogen cooled germanium photodiodes

■ Ultra-low-noise: NEP $0.7 \mathrm{fW} / \mathrm{VHz}$
■ Wavelength range from 320 nm to 1700 nm

- Bandwidth DC to 20 Hz
- Transimpedance amplifier with high gain up to $10^{12} \mathrm{~V} / \mathrm{A}$ included

Model	FWPR-20-SI	FWPR-20-IN
Photodiode	$1.1 \times 1.1 \mathrm{~mm}^{2} \mathrm{Si}$	$0.5 \mathrm{~mm} \emptyset$ InGaAs-PIN
Spectral Range	320-1100 nm	900-1700 nm
Bandwidth (-3 dB)	DC - 20 Hz	DC - 20 Hz
Rise/Fall Time (10\%-90\%)	18 ms	18 ms
Transimpedance Gain	$1 \times 10^{12} \mathrm{~V} / \mathrm{A}$	$1 \times 10^{11} \mathrm{~V} / \mathrm{A}$
Max. Conversion Gain	0.6×10^{12} V/W (@ 960 nm)	$0.95 \times 10^{11} \mathrm{~V} / \mathrm{W}$ (@ 1550 nm)
NEP (@ 1 Hz)	$\begin{aligned} & 0.7 \mathrm{fW} / \mathrm{JHz} \\ & (@ 960 \mathrm{~nm}) \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{fW} / / \mathrm{Hz} \\ & (@ 1550 \mathrm{~nm}) \end{aligned}$
Output Noise	6 mV RMS	3 mV RMS
Input Options	FST, FS	FST, FS
Power Requirements	$\pm 15 \mathrm{~V}, \pm 15 \mathrm{~mA}$ typ.	
Dimensions	$100 \times 51 \times 28 \mathrm{~mm}$, weight 190 g (0.42 lbs)	

Output voltage $\pm 10 \mathrm{~V} \max$ (@100 k Ω load). Offset adjustable by potentiometer. Units with fiber optic input are optionally available. Output short-circuit protected. Threaded M4 and 8-32 mounting holes for use with standard mounting posts. Power supply $\pm 15 \mathrm{~V}$ via 3 -pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

APPLICATIONS

Spectroscopy, reflection and transmission measurements |
Time-resolved optical pulse and power measurements | Characterization of light sources | Highly sensitive applications using chopper modulation | Optical front-end for oscilloscopes, A/D converters and lock-in amplifiers

■ Ultra-low-noise: NEP $\leq 10 \mathrm{fW} / \mathrm{VHz}$

- Wavelength range from 320 to 1700 nm
- Bandwidth DC to 2 kHz
- Transimpedance gain switchable $10^{9} \mathrm{~V} / \mathrm{A}, 10^{10} \mathrm{~V} / \mathrm{A}$

Model	PWPR-2K-SI	PWPR-2K-IN
Photodiode	$1.2 \mathrm{~mm} \emptyset$ Si-PIN	0.5 mm Ø InGaAs-PIN
Spectral Range	320-1060 nm	900-1700 nm
Bandwidth (-3 dB)	DC-2 kHz	DC-2 kHz
Rise/Fall Time (10% - 90%)	165 цs	165 нs
Transimpedance Gain (switchable)	$\begin{aligned} & 1 \times 10^{9} \mathrm{~V} / \mathrm{A} \\ & 1 \times 10^{10} \mathrm{~V} / \mathrm{A} \end{aligned}$	$\begin{aligned} & 1 \times 10^{9} \mathrm{~V} / \mathrm{A} \\ & 1 \times 10^{10} \mathrm{~V} / \mathrm{A} \end{aligned}$
Max. Conversion Gain	$0.64 \times 10^{9} \mathrm{VM}$ (@ 900 nm , gain $10^{9} \mathrm{~V} / \mathrm{A}$) $0.64 \times 10^{10} \mathrm{~V} / \mathrm{W}$ (@ 900 nm , gain $10^{10} \mathrm{~V} / \mathrm{A}$)	$1.1 \times 10^{9} \mathrm{~V} / \mathrm{W}$ (@ 1580 nm , gain $10^{9} \mathrm{~V} / \mathrm{A}$) $1.1 \times 10^{10} \mathrm{~V} / \mathrm{W}$ (@ 1580 nm , gain $10^{10} \mathrm{~V} / \mathrm{A}$)
NEP (@ 100 Hz)	$9 \mathrm{fW} / \mathrm{JHz}$ (@ 900 nm)	$10 \mathrm{fW} / \mathrm{Hz}$ (@1580 nm)
Output Noise	$0.45 \mathrm{mV} \mathrm{Vms}^{\text {@ }} 10^{9} \mathrm{~V} / \mathrm{A}$	$0.75 \mathrm{mV} V_{\text {pus }} @ 10^{9} \mathrm{~V} / \mathrm{A}$
Input Options	FST, FS	FST, FS
Power Requirements	$\pm 15 \mathrm{~V},+32 \mathrm{~mA} /-25 \mathrm{~mA}$	
Dimensions	$100 \times 51 \times 33 \mathrm{~mm}, 220 \mathrm{~g}(0.49 \mathrm{lbs})$	

Output voltage $\pm 10 \mathrm{~V}$ max (@ $100 \mathrm{k} \Omega$ load). Offset adjustable by potentiometer. Output short-circuit protected. Power supply $\pm 15 \mathrm{~V}$ via 3 -pin Lemo ${ }^{\oplus}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

FEMTO® Messtechnik GmbH
Klosterstraße 64
10179 Berlin
P: +49-(0)30-280 4711-0
F: +49-(0)30-280 4711-11
E: info@femto.de
Germany

LOCK-IN AMPLIFIERS

Easy-to-Use High-Performance Lock-In Amplifiers For Cost-Sensitive Applications

CURRENT AMPLIFIERS

VOLTAGE AMPLIFIERS

GHZ-WIDEBAND
AMPLIFIERS

PHOTORECEIVERS

LOCK-IN AMPLIFIERS

ACCESSORIES

LIA-MV-150 Series Lock-In Amplifier Modules

- Current and voltage input
- Working frequency up to 45 kHz
- Adjustable sensitivity, time constant and phase
- Local and remote control
- Compact and EMI-shielded case

Power supply via 3-pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

APPLICATIONS
Spectroscopy | Laser stabilization | Luminescence, fluorescence, phosphorescence measurements | Light scattering measurements | Opto-electronical quality control | Integration in industrial and scientific measurement systems | OEM systems

Model	LIA-MV-200-L Single Phase	LIA-MV-200-H Single Phase	LIA-MVD-200-L Dual Phase	LIA-MVD-200-H Dual Phase
Working Frequency	$5 \mathrm{~Hz}-10 \mathrm{kHz}$	$50 \mathrm{~Hz}-120 \mathrm{kHz}$	$5 \mathrm{~Hz}-10 \mathrm{kHz}$	$50 \mathrm{~Hz}-120 \mathrm{kHz}$
Time Constants	$\begin{aligned} & 3 \mathrm{~ms}-10 \mathrm{~s} \\ & 6 \text { or } 12 \mathrm{~dB} / \text { oct. } \end{aligned}$	$\begin{aligned} & 300 \mu \mathrm{~s}-1 \mathrm{~s} \\ & 6 \text { or } 12 \mathrm{~dB} / \mathrm{oct} . \end{aligned}$	$\begin{aligned} & 3 \mathrm{~ms}-10 \mathrm{~s} \\ & 6 \text { or } 12 \mathrm{~dB} / \mathrm{oct} . \end{aligned}$	$\begin{aligned} & 300 \mu \mathrm{~s}-1 \mathrm{~s} \\ & 6 \text { or } 12 \mathrm{~dB} / \mathrm{cct} \text {. } \end{aligned}$
Adjustable Signal Filter (6 dB/oct.)	Highpass $0.2 \mathrm{~Hz}-1 \mathrm{kHz}$ Lowpass $100 \mathrm{~Hz}-1 \mathrm{MHz}$	Highpass $2 \mathrm{~Hz}-10 \mathrm{kHz}$ Lowpass $100 \mathrm{~Hz}-1 \mathrm{MHz}$	Highpass $0.2 \mathrm{~Hz}-1 \mathrm{kHz}$ Lowpass $100 \mathrm{~Hz}-1 \mathrm{MHz}$	Highpass $2 \mathrm{~Hz}-10 \mathrm{kHz}$ Lowpass $100 \mathrm{~Hz}-1 \mathrm{MHz}$
Outputs (BNC)	$\begin{aligned} & X=\text { in phase, } \\ & \pm 10 \mathrm{~V} \text { full scale, short-circuit protected, } \\ & \text { Signal monitor output } \end{aligned}$		$\begin{aligned} & X=\text { in phase, } \\ & Y=\text { quadrature, } \\ & R=\text { magnitude, } \\ & \pm 10 \text { V full scale, short-circuit protected, } \\ & \text { Signal monitor output } \end{aligned}$	
Sensitivity (Full Scale)	Voltage: $3 \mu \mathrm{~V}-1 \mathrm{~V}$ in 1-3-10 steps Current: $30 \mathrm{pA}-10 \mu \mathrm{~A}$ in 1-3-10 steps			
Voltage Input (BNC)	Instrumentation amplifier, noise $12 \mathrm{nV} / \mathrm{/} / \mathrm{Hz}$			
Current Input (BNC)	Transimpedance amplifier, gain $100 \mathrm{kV} / \mathrm{A}$, noise $0.4 \mathrm{pA} / \mathrm{/Hz}$			
Reference Input (BNC)	$\pm 100 \mathrm{mV}$ to $\pm 5 \mathrm{~V}$, switchable to TTL			
Phase	Adjustable $0^{\circ}-360^{\circ}$; resolution: 8-bit @ f $\leq 60 \mathrm{kHz}, 7$-bit @ f $>60 \mathrm{kHz}$ Temperature drift $<0.01^{\circ} / \mathrm{K}$			
Max. Dyn. Reserve	80 dB			
Digital Control	16 TL/CMOS inputs: 8-bit phase, 4-bit time constant, 4-bit sensitivity			
Power Supply	$\pm 15 \mathrm{~V},+120 \mathrm{~mA} /-60 \mathrm{~mA}$			
Dimensions	$223 \times 105 \times 65 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight $1,000 \mathrm{~g}$ (2.2 lbs)			

The optional Reference Oscillator SOM-1 can be connected by an extension connector inside the module. Power supply via 3-pin Lemo ${ }^{\otimes}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

APPLICATIONS

Spectroscopy | Luminescence, fluorescence, phosphorescence measurements | Light scattering measurements | Laser stabilization | Opto-electronical quality control | Integration into industrial and scientific measurement-systems | Alternative to expensive desktop lock-in amplifiers for general lab use

- Single and dual phase
- Rugged aluminum housing
- BNC connectors for input and output signals
■ Working frequency 5 Hz up to 120 kHz
- Phase shifter $0^{\circ}-360^{\circ}$
- Current and voltage input
- Optional reference oscillator module SOM-1 available

LIA-BV(D)-150 Series Single-Board Lock-In Amplifiers

- Single and dual phase 19" boards

■ Working frequency 5 Hz up to 120 kHz

- Phase shifter $0^{\circ}-360^{\circ}$

■ Current and voltage input

- Parameter control by local switches and opto-isolated digital inputs
- Mounting kit MK-LIA-2 and reference oscillator module SOM-1 available

Model	LIA-BV-150-L Single Phase	LIA-BV-150-H Single Phase	LIA-BVD-150-L Dual Phase	LIA-BVD-150-H Dual Phase
Working Frequency	$5 \mathrm{~Hz}-10 \mathrm{kHz}$	50 Hz - 120 kHz	$5 \mathrm{~Hz}-10 \mathrm{kHz}$	$50 \mathrm{~Hz}-120 \mathrm{kHz}$
Time Constants	$\begin{aligned} & 3 \mathrm{~ms}-10 \mathrm{~s} \\ & 6 \text { or } 12 \mathrm{~dB} / \mathrm{oct} . \end{aligned}$	$\begin{aligned} & 300 \mu \mathrm{~s}-1 \mathrm{~s} \\ & 6 \text { or } 12 \mathrm{~dB} / \mathrm{oct} . \end{aligned}$	$\begin{aligned} & 3 \mathrm{~ms}-10 \mathrm{~s} \\ & 6 \text { or } 12 \mathrm{~dB} / \mathrm{oct} . \end{aligned}$	$\begin{aligned} & 300 \mu \mathrm{~s}-1 \mathrm{~s} \\ & 6 \text { or } 12 \mathrm{~dB} / \mathrm{cct} . \end{aligned}$
Signal Filter	Highpass $0.2 \mathrm{~Hz}-1 \mathrm{kHz}$ Lowpass $100 \mathrm{~Hz}-1 \mathrm{MHz}$	Highpass $2 \mathrm{~Hz}-10 \mathrm{kHz}$ lowpass 100 Hz - 1 MHz	Highpass $0.2 \mathrm{~Hz}-1 \mathrm{kHz}$ Lowpass $100 \mathrm{~Hz}-1 \mathrm{MHz}$	Highpass $2 \mathrm{~Hz}-10 \mathrm{kHz}$ lowpass $100 \mathrm{~Hz}-1 \mathrm{MHz}$
Outputs	$\begin{aligned} & X=\text { in phase, } \\ & \pm 10 \mathrm{~V} \text { full scale, short-circuit protected, } \\ & \text { Signal monitor output } \end{aligned}$		$X=$ in phase, $Y=$ quadrature, $R=$ magnitude $\pm 10 \mathrm{~V}$ full scale, short-cir Signal monitor output	otected,
Sensitivity (Full Scale)	Voltage: $3 \mu \mathrm{~V}-1 \mathrm{~V}$ in 1-3-10 steps Current: $30 \mathrm{pA}-10 \mu \mathrm{~A}$ in 1-3-10 steps			
Voltage Input	True-differential instrumentation amplifier, noise $12 \mathrm{nV} / / \mathrm{Hzz}$			
Current Input	Transimpedance amplifier, gain $100 \mathrm{kV} / \mathrm{A}$, noise $0.4 \mathrm{pA} / \mathrm{l} \mathrm{Hz}$			
Reference Input	$\pm 100 \mathrm{mV}$ to $\pm 5 \mathrm{~V}$, switchable to TTL			
Phase	Adjustable $0^{\circ}-360^{\circ}$; resolution: 8-bit @ f $\leq 60 \mathrm{kHz}, 7$-bit @ f $>60 \mathrm{kHz}$ Temperature drift $<0.01^{\circ} / \mathrm{K}$			
Max. Dyn. Reserve	80 dB			
Digital Control	16 TL/CMOS inputs: 8 -bit phase, 4-bit time constant, 4-bit sensitivity			
Power Supply	$\pm 15 \mathrm{~V},+120 \mathrm{~mA} /-60 \mathrm{~mA}$			
Dimensions	$160 \times 100 \times 20 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$, weight $100 \mathrm{~g}(0.22 \mathrm{lbs})$			

APPLICATIONS

Spectroscopy | Luminescence, fluorescence, phosphorescence measurements | Light scattering measurements | Opto-electronical quality control | Integration in industrial and scientific measurement-systems | Multichannel systems at an attractive price

ACCESSORIES

CURRENT AMPLIFIERS

VOLTAGE AMPLIFIERS

GHZ-WIDEBAND
AMPLIFIERS

PHOTORECEIVERS
LOCK-IN AMPLIFIERS

ACCESSORIES

ACCESSORIES

LUCI-10 USB Control Interface

PS-15-25-L Remote Power Supply

■ Input voltage 100-240 VAC

- Output $\pm 15 \mathrm{~V},+500 /-400 \mathrm{~mA}$
- Shielded output cord with Lemo ${ }^{\circledR}$ plug
- Floating design to avoid ground loops

■ Short-circuit protected

- Ripple typ. $15 \mathrm{mV}_{\text {RMS }}$
- Suitable for all FEMTO modules
- Available as European, Australian and US version

ACCESSORIES

Accessories For Photoreceivers

All FEMTO photoreceivers offered with FS input (round flange with 25 mm diameter) are now also available with 1.035 "-40 threaded flange (FST) input - for even more flexibility on the optical bench! For example converting the free-space FST input to an optical fiber input is easily done by screwing on one of the optionally available FEMTO fiber-adapters PRA-FC and PRA-FSMA.

The post adapter plate PRA-PAP expands the optical breadboard mounting options for FEMTO photoreceivers. Even for photoreceivers that are already equipped with post mounting threads the post adapter plate enlarges the mounting position options. Due to the integrated M4 and 8-32 UNC tapped holes, standard posts for breadboard systems can be easily mounted to the photoreceiver via the adapter plate.

The picture shows the PWPR-2K-SI-FST being easily turned into a fiber coupled model.

PRA-FC / PRA-FSMA Fiber-Adapters And Mounting Tool

- Compatible with all FEMTO photoreceivers with threaded 1.035 "-40 free space input (FST)
- Easy mounting option for standard optical fibers
- Recommended for photosensitive areas of 0.4 mm diameter or more (coupling efficiency may be compromised for photodiodes with smaller diameter)
- Machined from solid stainless steel

■ Available adapter types: PRA-FC (FC/PC, FC/APC, FC/UPC) and PRA-FSMA

- Aditionally available: spanner wrench AT-W1 for convenient mounting of the adapters

PRA-PAP Post Adapter Plate

■ Compatible with FEMTO photoreceiver series FWPR, PWPR, OE, LCA-S and HCA-S

- M4 and 8-32 UNC threads suitable for standard optical mounting posts
- High-tensile material
- Mounting screws included

ACCESSORIES

CAB-LN1 Series Low Noise Cables

- Minimizes triboelectric and microphonic noise
- Designed for ultra sensitive current and charge measurements
- Noise level reduction by a factor of 1,000
- Highly shielding coaxial design
- Fully assembled with premium quality connectors
■ Ultra high insulation resistance $>10^{14} \Omega$ - guaranteed
- Variety of lengths available:
from 10 cm to 5 m

APPLICATIONS
Measurements of low currents down to femtoamperes | Photodetectors and ionization detectors | High resistance measurements | Scanning probe microscopy (STM, SPM, STS) | Spectroscopy | Piezo- and pyroelectric transducers

Length	Plug BNC - BNC
$\mathbf{0 . 1} \mathbf{~ m}$	CAB-LN1-BB-010
$\mathbf{0 . 2} \mathbf{~ m}$	CAB-LN1-BB-020
$\mathbf{0 . 5} \mathbf{~ m}$	CAB-LN1-BB-050
$\mathbf{1 . 0} \mathbf{~ m}$	CAB-LN1-BB-100
$\mathbf{1 . 5} \mathbf{~ m}$	CAB-LN1-BB-150
$\mathbf{2 . 0} \mathbf{~ m}$	CAB-LN1-BB-200
$\mathbf{3 . 0} \mathbf{~ m}$	CAB-LN1-BB-300
$\mathbf{5 . 0} \mathbf{~ m}$	CAB-LN1-BB-500

Lemo ${ }^{\circledR}$ Connectors

- High quality connector
- 3-pin and 4-pin versions available
- For use with shielded cables
- Suitable for all FEMTO modules

[^0]: Offset adjustable by trimpot or external control voltage. Power supply via 3-pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet.

[^1]: *The logarithm of a negative number is not defined as real number. Therefore the negative part of an input signal is rectifyed prior to applying the logarithmic amplification.

[^2]: * Since illumination conditions with the permanently mounted fiber optic connector are well defined, the FC models are delivered with a factory calibrated conversion gain. The electro optical conversion gain factors of the FST and FS free space models are set to fit nominally at the calibration wavelength.
 ** @ calibration wavelength
 Offset adjustable by trimpot or external control voltage. LED overload indication. Output short-circuit protected. Power supply via 3-pin Lemo ${ }^{\boxplus}$ socket. A mating connector is provided with the device Optional power supply PS-15 available. For further information please view the datasheet.

[^3]: Please note! FEMTO® offers fiber connectors (e.g. PRA_FC and PRA-FSMA) which allow connecting the most common types of optical fibers to photoreceivers with FST-input without considerable optical losses. Adapters for optical cables with FC connectors (FC/PC, FC/APC, FC/UPC) and FSMA connectors are available. These are recommended for photosensitive areas of 0.4 mm diameter or more (coupling efficiency may be compromised for photodiodes with smaller diameter).

[^4]: Offset adjustable by potentiometer. Equipped with UNC 8-32 and M4 threaded holes for integration into optical systems on standard holders. Output short-circuit protected. Power supply via 3-pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet or contact FEMTO.

[^5]: Output voltage $\pm 1.0 \mathrm{~V}$ (@ 50Ω load) for linear amplification. Offset adjustable by potentiometer. Output short-circuit protected. Photoreceivers with free space input come with threaded M4 and 8-32 mounting holes for use with standard mounting posts. Power supply $\pm 15 \mathrm{~V}$ via 3 -pin Lemo ${ }^{\circledR}$ socket. A mating connector is provided with the device. Optional power supply PS-15 available. For further information please view the datasheet

