Datasheet 0E-300-SI-10 200 MHz Variable Gain Photoreceiver OU 104 105 106 107 108 👩 Offset 10² 10³ 10⁴ 10⁵ 10⁶ 10⁷ DC 0 80 14 3.5 1.8 MHz BW OE-300-SI-10 E Features Adjustable transimpedance gain from 10² to 10⁸ V/A ٠ Wide bandwidth up to 200 MHz • Si-PIN photodiode covering the 400 to 1000 nm wavelength range • Large optical detector size 1 × 1 mm • High dynamic input range up to 10 mW optical power • Very low noise, NEP down to 76 fW/√Hz • Switchable low pass filters for minimizing wideband noise . Free-space input 1.035"-40 threaded, easily convertible to fiber optic input (FC • and FSMA) with optionally available screw-on adapters Full manual and remote control capability • Applications All-purpose low-noise photoreceiver (O/E converter) for the MHz range ٠ Time resolved optical pulse and power measurements • Laser intensity noise measurements (RIN) . Optical front-end for oscilloscopes, spectrum analyzers, A/D converters and • **RF lock-in amplifiers** Block Diagram Buffer-amplifier and Current to voltage converter Programmable Programmable bandwidth limiting AC/DC coupling gain amplifier Offset nulling OPTICAL 100 Ω ... 10 MΩ Rf **INPLIT** VOLTAGE × 10 1 / V OUTPUT × 1 3 High speed 10 MHz FBW Low noise • 1 MHz Stabilized Overload detector bias voltage ¥\$ DC-MONITOR OUTPUT Parameter Supply voltage control unit regulator ₹\$K Manual POWER Optocoupler switches isolated unit DIG. CONTROL INPUTS BS01-0E-300 R2 SOPHISTICATED TOOLS FOR SIGNAL RECOVERY П M 0

	-			
Intended Use	The OE-300-SI-10 is a high speed variable gain photoreceiver. It is designed for fast and precise conversion of small optical signals into equivalent output voltages. Operation is mostly self-explanatory. If in doubt, consult this document or contact support@femto.de.			
	For safe operation, please refer to the damage thresholds specified in the "Absolute Maximum Ratings", "Temperature Range" and "Power Supply" sections of this document. The operating environment must be free of smoke, dust, grease, oil, condensing moisture, and other contaminants that could affect the operation or performance.			
Available Version	OE-300-SI-10-FST	1.035"-40 threaded flange with internally threaded coupler ring (outer diameter 30 mm) for free space applications. Compatible with many optical standard accessories and for use with various types of fiber connector adapters. Optionally available: Fiber adapters PRA-FC, PRA-FCA and PRA-FSMA. With the relative large 1 \times 1 mm photodiode installed in the OE-300-SI-10 input coupling is not critical. However, standard SM 9/125 fibers (PC or APC) with low numerical aperture (NA) are recommended for ensuring near 100% coupling efficiency.		
Related OE-300 Models	See separate datasheets for follo	wing models on www.femto.de:		
	0E-300-SI-30-FST	Si-PIN, \varnothing 3 mm, 320 - 1000 nm 1.035"-40 threaded flange		
	0E-300-IN-01-FC	InGaAs-PIN, Ø 80 $\mu m,$ 900 - 1700 nm FC fiber receptacle only		
	0E-300-IN-03-FST	InGaAs-PIN, Ø 300 $\mu m,800$ - 1700 nm 1.035"-40 threaded flange		
Available Accessories	PRA-FC PRA-FCA PRA-FSMA	Fiber-adapter with external 1.035"-40 thread		
	PRA-PAP	Alternative mounting option: post adapter plate, easy to mount on FEMTO photoreceiver series OE, FWPR, PWPR, HCA-S and LCA-S		
	PS-15-25-L	Power Supply input: 100 – 240 VAC output: ±15 VDC		
SOPHISTICATED	TOOLS FOR SIGNAL	RECOVERY FEDTO		

0E-300-SI-10

	200 MHz Varia	ble G	ain l	Photo	orece	iver	
Available Accessories (continued)	LUCI-10	Compact digital I/O interface for USB remote control, supports opto-isolation of amplifier signal path from PC USB port, 16 digital outputs, 3 opto-isolated digital inputs, bus-powered operation					
Specifications	Test conditions	$V_{S}=\pm15$ V, $T_{A}=25$ °C, output load impedance 50 $\Omega,$ warm-up 20 minutes (min. 10 minutes recommended)					2, d)
Gain	Transimpedance gain Gain accuracy	$1\times 10^2 \ldots 1\times 10^8$ V/A (output load 50 $\Omega)$ ± 1 % electrical, between settings					
Frequency Response	Lower cut-off frequency Upper cut-off frequency (–3 dB)	DC / 100 Hz, switchable up to 200 MHz (see table below), switchable to 1 MHz or 10 MHz					
Input	Optical CW saturation power Noise equivalent power (NEP)	see table below see table below					
Performance depending on Gain Setting	<u>Gain setting (low noise) (V/A)</u> Upper cut-off frequency (–3 dB) Rise/fall time (10 % - 90 %) NEP (/√Hz, @850 nm) Measured at Integr. input noise (RMS)* CW saturation power (@ 850 nm)	10 ² 200 MHz 1.9 ns 322 pW 20 MHz 7.5 μW 10 mW	10 ³ 80 MHz 3.25 ns 25 pW 8 MHz 580 nW 1.7 mW	10 ⁴ 14 MHz 26 ns 2.9 pW 1.4 MHz 35 nW 170 μW	10 ⁵ 3.5 MHz 92 ns 740 fW 350 kHz 4.9 nW 17 μW	10 ⁶ 1.8 MHz 235 ns 260 fW 180 kHz 1.3 nW 1.7 μW	10 ⁷ 220 kHz 1.6 μs 78 fW 22 kHz 100 pW 170 nW
	Gain setting (high speed) (V/A) Upper cut-off frequency (–3 dB) Rise/fall time (10 % - 90 %) NEP (/ _√ /Hz, @ 850 nm) Measured at Integr. input noise (RMS)* CW saturation power (@ 850 nm)	10 ³ 175 MHz 2.3 ns 231 pW 18 MHz 4.5 μW 1.7 mW	10 ⁴ 80 MHz 3.45 ns 10 pW 8 MHz 440 nW 170 μW	10 ⁵ 14 MHz 26 ns 2.2 pW 1.4 MHz 31 nW 17 μW	10 ⁶ 3.5 MHz 94 ns 670 fW 350 kHz 4.8 nW 1.7 μW	10 ⁷ 1.8 MHz 233 ns 228 fW 180 kHz 1.3 nW 170 nW	10 ⁸ 220 kHz 1.6 μs 76 fW 22 kHz 100 pW 17 nW
	* The integrated input noise is measured with a shaded input in the full bandwidth ("FBW") setting (referred to 850 nm). The measurement bandwidth is $3 \times$ the upper cut-off frequency at the specific gain setting; filter slope is a 1st order roll-off.						
	The input referred peak-peak nois	bise can be calculated from the RMS noise as follows: $P_{\text{Input noise peak-to-peak}} = P_{\text{Input noise RMS}} \times 6$					
	The output noise is given by:	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
	The integrated noise will be reduced considerably by setting the low pass filter to "1 MHz" or "10 MHz" instead of "FBW". This is especially useful for continuous wave (CW) measurements.						
Detector	Detector type Active area Spectral range Sensitivity Dark current	Si-PIN photodiode 1 mm × 1 mm 400 - 1000 nm 0.58 A/W typ. (@ 850 nm) 0.12 nA typ.					
Output	Output voltage rang Output impedance Max. output current Slew rate Output offset compensation	± 1 V (@ 50 Ω output load), for linear amplification 50 Ω (designed for 50 Ω load) ± 40 mA (short-circuit proof) 1000 V/µs adjustable by offset potentiometer and external control voltage, output offset compensation range min. ± 100 mV					
OPHISTICATED T	OOLS FOR SIGNAL	RECO		-			

Specifications (continued)						
DC Monitor Output	Monitor output gain	ModeMonitor gainLow noiseGain setting divided by -1High speedGain setting divided by -10				
	Monitor output polarity Monitor output voltage range Monitor output bandwidth Monitor output impedance	inverting ±1 V (@ ≥1 MΩ load) DC 1 kHz 1 kΩ (designed for ≥1 MΩ load)				
Indicator LED	Function	overload				
Digital Control	Control input voltage range Control input current Overload output	LOW bit: -0.8 V +1.2 V, HIGH bit: +2.3 V +12 V 0 mA @ 0 V, 1.5 mA @ +5 V, 4.5 mA @ +12 V non active: <0.4 V @ 01 mA active: typ. 5 5.1 V @ 0 2 mA				
Ext. Offset Control	Control voltage range Offset control input impedance	±10 V 15 kΩ				
Optical Input Connector	Material FST flange Material FST coupler ring	1.4305 stainless steel, nickel-plated 1.4305 stainless steel, glass bead blasted				
Power Supply	Supply voltage Supply current	± 15 V (± 14.75 V ± 16.5 V) ± 110 / -90 mA typ. (depends on operating conditions, recommended power supply capability min. ± 200 mA)				
Case	Weight Material	360 g (0.79 lbs) AlMg4.5Mn, nickel-plated				
Temperature Range	Storage temperature Operating temperature	-40 °C +80 °C 0 °C +60 °C				
Absolute Maximum Ratings	Optical input power (CW) Digital control input voltage Analog control input voltage Power supply voltage	12 mW -5 V/+16 V relative to digital ground DGND (pin 9) ±15 V relative to analog ground AGND (pin 3) ±20 V				
Connectors	Input Output Power supply	1.035"-40 threaded flange for free space applications BNC jack (female) LEMO® series 1S, 3-pin fixed socket (mating plug type: FFA.1S.303.CLAC52) <u>PIN PIN 1: +15 V</u> PIN 2: -15 V PIN 3: GND				
SOPHISTICATED	TOOLS FOR SIGNAL	RECOVERY FEDTO				

Connectors (continued)								
	Control port							
		Pin 1:+12 V (stabilized power supply output*)Pin 2:-12 V (stabilized power supply output*)Pin 3:AGND (analog ground for pins 1 - 8)Pin 4:+5 V (stabilized power supply output*)Pin 5:digital output: overload (referred to pin 3)Pin 6:DC Monitor outputPin 7:NCPin 8:offset control voltage inputPin 9:DGND (ground for digital control pins 10 - 16)Pin 10:digital control input: gain, LSBPin 11:digital control input: gainPin 12:digital control input: AC/DCPin 13:digital control input: high speed / low noisePin 15:upper cut-off frequency limit 10 MHzPin 16:upper cut-off frequency limit 1 MHzPin 17 - 25:NC						
		*stabilized power supply output current ±12 V: max. ±20 mA, +5V: max. 30 mA						
Remote Control Operation	General	Remote control input bits are opto-isolated and connected by a logical OR function to the local switch settings. For remote control set the corresponding local switches to "Remote", "DC", "L" (low noise mode) and "FBW", and select the desired setting via a bit code at the corresponding digital inputs. Mixed operation, e.g. local AC/DC setting and remote controlled gain setting. is also possible.						
	Gain setting	Low noise F Gain (V/A) ($\frac{10^{2}}{10^{2}}$ 10 ² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10 ⁶ 10 ⁷ 10	High speed Gain (V/A) Pin 14=HIGH 10^3 10^4 10^5 10^6 10^7 10^8	Pin 12 MSB LOW LOW LOW LOW HIGH HIGH	Pin 11 LOW LOW HIGH HIGH LOW LOW	Pin 10 LSB LOW HIGH LOW HIGH LOW HIGH		
	AC/DC setting	<u>Coupling</u> DC L AC F	<u>Pin 13</u> _OW HIGH					
	Low pass filter setting	<u>Upper cut-off freq. limit</u> full bandwidth 10 MHz 1 MHz		Pin 15 LOW HIGH LOW	<u>Pin 16</u> LOW LOW HIGH			
	High speed / low noise setting	<u>Mode</u> low noise mode high speed mode		<u>Pin 14</u> LOW HIGH				
SOPHISTICATED	TOOLS FOR SIGNAL	RECOVEF	RY	E	M	TO		

