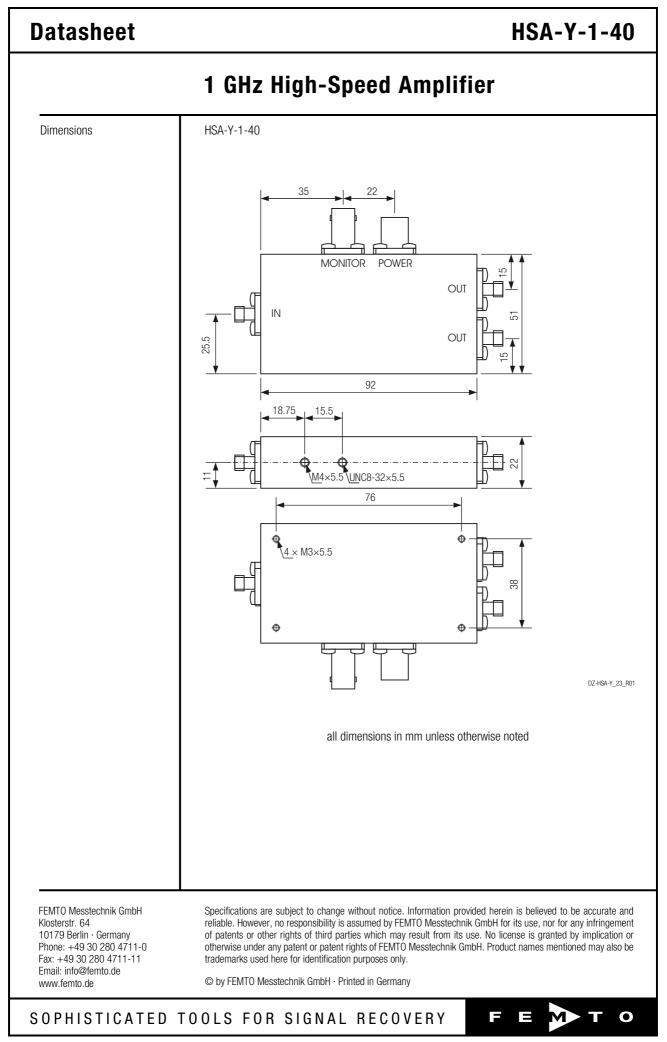
Datasheet HSA-Y-1-40 1 GHz High-Speed Amplifier MONITOR POWER HIGH-SPEED AMPLIFIER Features Bandwidth 10 kHz - 1 GHz • Exceptional low 10 kHz lower cut-off frequency for optimal pulse processing without shape distortion Rise time 330 ps Gain 40 dB . Noise figure 1.9 dB . Integrated bias circuit . Monitor output Two identical signal outputs Preamplifier for ultra-fast detectors (microchannel-plates, photomultipliers, Applications • avalanche-photodiodes, PIN-photodiodes etc.) Oscilloscope and transient-recorder preamplifier Time-resolved pulse and transient measurements Block Diagram monitor amplifier DC - 100 kHz MONITOR 26 dB OUTPUT buffe OUTPUT INPUT 40 dB low noise buffe OUTPUT wideband bias amplifier DC-path 50 Ω BS-HSA-Y 23 R01 Intended Use The HSA-Y-1-40 amplifier is a fixed gain wideband GHz amplifier. It is designed for ultra fast amplification of small voltage and current signals in the frequency range from 10 kHz to 1 GHz. Operation is mostly self-explanatory. If in doubt, consult this document or contact support@femto.de. For safe operation, please refer to the damage thresholds specified in the "Absolute Maximum Ratings", "Temperature Range" and "Power Supply" sections of this document. **Application Notes** CAUTION! Do not exceed the maximum allowable input power of +13 dBm (20 mW). If in doubt, use attenuators on the amplifier input. The HSA-Y-1-40 offers two identical RF outputs. For operation it is mandatory that both RF outputs are terminated with 50 Ω loads. If only one output is used, the unused SMA output socket must be terminated with a 50 Ω terminator which is included in delivery. SOPHISTICATED TOOLS FOR SIGNAL RECOVERY Ц 0

Datasheet

HSA-Y-1-40


1 GHz High-Speed Amplifier

Available Accessories	PS-15-25-L	Power supply Input: AC 100 – 240 V Output: DC ±15 V
Related Models	HSA-Y-1-60 HSA-Y-2-20 HSA-Y-2-40	Gain 60 dB, 10 kHz – 1.1 GHz, noise figure 1.9 dB Gain 20 dB, 10 kHz – 2 GHz, noise figure 5.2 dB Gain 40 dB, 10 kHz – 1.9 GHz, noise figure 4.9 dB
Specifications	Test conditions	$V_{\text{S}}=\pm15$ V, $T_{\text{A}}=25$ °C, system impedance 50 $\Omega,$ warm-up 20 minutes (min. 10 minutes recommended)
Gain	Gain Transimpedance gain Gain accuracy Gain drift vs. temperature	40 dB (× 100) 5,000 V/A (50 Ω input impedance × 100 gain) ± 1 dB 0.024 dB/°C typ.
Frequency Response	Lower cut-off frequency (–3 dB) Upper cut-off frequency (–3 dB)	10 kHz 1 GHz
Time Response	Rise/fall time (10% - 90%) Group delay	330 ps 1.2 ns typ.
Input	DC input impedance RF input impedance 50 Ω noise figure Equ. input noise voltage Equ. input noise current Input reflection S11	50 Ω 50 Ω 1.9 dB (@ f <700 MHz) 330 pV/√Hz (@ f <700 MHz) 6.6 pA/√Hz (calculated: 330 pV/√Hz divided by 50 Ω) –15 dB (@ f <3 GHz)
Output	Two identical RF outputs: Output peak-peak voltage range Output power P _{1dB} Output impedance Output reflection S22 Isolation between outputs	2 V (\pm 1 V) (@ <500 MHz, for linear amplification) +11.5 dBm (@ f <500 MHz) 50 Ω (terminate with 50 Ω load) -13 dB (@ f <3 GHz) 20 dB (@ f <3 GHz)
Monitor Output	Gain Monitor output impedance Lower cut-off frequency Upper cut-off frequency Output voltage	26 dB (1 kV/A) 50 Ω (terminate with ≥10 k Ω load, for best performance) DC 100 kHz ±10 V (@ 10 k Ω load)
Power Supply	Supply voltage Supply current	± 15 V (± 14.75 V ± 16.5 V) +200 / -10 mA typ. (depends on operating conditions, recommended power supply capability min. ± 250 mA)
Case	Weight Material	190 g (0.42 lbs) including 50 Ω SMA terminator AIMg4.5Mn, nickel-plated
Temperature Range	Storage temperature Operating temperature	-40 °C +85 °C 0 °C +60 °C
Absolute Maximum Ratings	DC input voltage RF input power Power supply voltage	±4 V +13 dBm ±20 V
	TOOLS FOR SIGNAL	

Datasheet

HSA-Y-1-40

Connectors	Input	SMA jack (female)
00111001010	RF Output	$2 \times SMA$ jack (female)
	Monitor output	BNC jack (female)
	Power supply	LEMO [®] series 1S, 3-pin fixed socket (mating plug type: FFA.1S.303.CLAC52)
		PIN 2 -V _s -V _s PIN 3 PIN 1 +V _s Pin 1: +15 V Pin 2: -15 V Pin 3: GND
Scope of Delivery	HSA-Y-1-40, 50 Ω SMA terminator, LEM0 $^{\oplus}$ 3-pin connector, datasheet, transport package	
Ordering Information	HSA-Y-1-40	High-speed GHz amplifier

