Variable-Gain
Ultra-Wideband Voltage Amplifier

Features
- Variable gain 30 to 70 dB (approx. ×30 to ×3000), switchable in 10 dB steps
- Bandwidth 1 kHz ... 1.1 GHz
- Bandwidth, frequency response and pulse response independent of gain setting
- Local and remote control
- DC monitor output

Applications
- Oscilloscope and transient-recorder preamplifier
- Photomultiplier and microchannel-plate amplifier
- Signal-booster for optical receivers and current amplifiers
- Time-resolved pulse and transient measurements
- Automated measurement systems

Block Diagram

SOPHISTICATED TOOLS FOR SIGNAL RECOVERY
Datasheet

DUPVA-1-70

Variable-Gain

Ultra-Wideband Voltage Amplifier

| Related Models | DUPVA-1-60 | Gain values 20, 30, 40, 50, 60 dB
Upper cut-off frequency 1.2 GHz |
|----------------|------------|---|
| Available Accessories | CA-SMA-BNC | SMA to BNC adapter
PS-15 | power supply
input: 100 - 240 VAC
output: ±15 VDC, ±400/±250 mA
LUCI-10 | compact digital I/O interface for USB remote control, supports opto-isolation of amplifier signal path from PC
USB port, 16 digital outputs, 3 opto-isolated digital inputs, bus-powered operation |
| Specifications | Test conditions | $V_s = \pm 15\, V$, $T_a = 25\, ^\circ C$, system impedance = 50 Ω |
| Gain | Gain values | 30, 40, 50, 60, 70 dB
Gain accuracy | $\pm 0.1\, \text{dB}$ (between settings)
$\pm 1\, \text{dB}$ (overall)
Gain flatness | $\pm 0.15\, \text{dB}$ |
| Frequency Response | Lower cut-off frequency | 1 kHz
Upper cut-off frequency | 1.1 GHz
Upper cut-off frequency rolloff | 40 dB/oct. |
| Time Response | Rise/fall time (10 % - 90 %) | 390 ps
Group delay | 2.2 ns |
| Input | Input impedance AC | 50 Ω
Input impedance DC | 100 kΩ
Input VSWR (@ 30 dB gain) | $1.1 : 1$ (f < 1 GHz)
$1.2 : 1$ (f < 2 GHz)
Input VSWR (@ 40 - 70 dB gain) | $1.7 : 1$ (f < 1 GHz)
$1.7 : 1$ (f < 2 GHz)
50 Ω noise figure | 1.9 dB (@ 70 dB gain)
2.5 dB (@ 40 - 60 dB gain)
Equivalent input voltage noise | 330 pV/$\sqrt{\text{Hz}}$ (@ 70 dB gain)
400 pV/$\sqrt{\text{Hz}}$ (@ 40 - 60 dB gain)
1/f-noise corner | 20 kHz |
Specifications (continued)

Output
- **Output impedance**: 50 Ω
- **Output power P_{1dB}**:
 - @ 100 MHz: 12 dBm
 - @ 500 MHz: 11 dBm
- **Output peak-to-peak voltage** for linear amplification:
 - @ 100 MHz: 2 V
 - @ 500 MHz: 1.7 V
- **Output VSWR**: 1.5 : 1 ($f < 1 \text{ GHz}$)
 - 1.7 : 1 ($f < 2 \text{ GHz}$)
- **Reverse isolation**: 20 dBm
- **Dynamic range (without average)**: 62 dB ($P_{1dB} - \text{min. detectable signal}$)

Monitor Output
- **Monitor output gain**: 1 (@ ≥ 100 kΩ load)
- **Monitor output impedance**: 50 Ω (designed for ≥ 100 kΩ load)
- **Monitor output voltage range**: ±10 V
- **Monitor output current**: ±25 mA
- **Monitor output bandwidth**: DC ... 100 kHz

Digital Control
- **Control input voltage range**:
 - Low: –0.8 ... +0.8 V
 - High: +1.8 ... +12 V

Power Supply
- **Supply voltage**: ±15 V
- **Supply current**: +250 / –100 mA
 (without current consumption from Sub-D-connector)
- **Stabilized power supply output**:
 - ±12 V / max. 50 mA, +5 V / max. 50 mA
 (Auxiliary voltage outputs Pin 1-4 Sub-D-connector)

Case
- **Weight**: 510 g (1.1 lb)
- **Material**: AlMg4.5Mn, nickel-plated

Temperature Range
- **Storage temperature**: –40 ... +100 °C
- **Operating temperature**: 0 ... +60 °C

Absolute Maximum Ratings
- **Signal input power**:
 - +13 dBm ($f > 500$ Hz)
- **Signal input DC voltage**: ±16 V (slope max. ±1 V/ms)
- **Signal output reverse power**:
 - +16 V / –12 V (slope max. ±1 V/ms)
- **Control input voltage**:
 - +16 V / –5 V
- **Power supply voltage**: ±17 V
Variable-Gain Ultra-Wideband Voltage Amplifier

Connectors

- Input: SMA female
- Output: SMA female
- Power supply: Lemo® series 1S, 3-pin fixed socket (mating plug type: FFA.1S.303.CLAC52)
 - Pin 1: +15V
 - Pin 2: –15V
 - Pin 3: GND

Control port

- Sub-D 25-pin, female, qual. class 2
 - Pin 1: +12V (stabilized power supply output)
 - Pin 2: –12V (stabilized power supply output)
 - Pin 3: AGND (analog ground)
 - Pin 4: +5V (stabilized power supply output)
 - Pin 5: Monitor output
 - Pin 6 - 8: NC
 - Pin 9: DGND (ground f. digital control pin 10 - 25)
 - Pin 10 - 13: NC
 - Pin 14: Digital control input: gain, LSB
 - Pin 15: Digital control input: gain
 - Pin 16: Digital control input: gain, MSB
 - Pin 17 - 25: NC

Remote Control Operation

- General: Remote control input bits are opto-isolated and connected by logical OR to local switch setting. For remote control of the gain setting, set the local switch to “Ext.” and select the wanted gain setting via a 3-bit-code at the corresponding digital inputs:

<table>
<thead>
<tr>
<th>Gain</th>
<th>Pin 14</th>
<th>Pin 15</th>
<th>Pin 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 dB</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>40 dB</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>50 dB</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>60 dB</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>70 dB</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>
Variable-Gain
Ultra-Wideband Voltage Amplifier

Typical Performance Characteristics

Frequency response (logarithmic)

Frequency response (linear)
Variable-Gain
Ultra-Wideband Voltage Amplifier

Typical Performance Characteristics

Input reflection, S_{11}

Input return loss, S_{11} (Linear Magnitude)
Variable-Gain
Ultra-Wideband Voltage Amplifier

Typical Performance Characteristics

Output reflection, S22

Output return loss, S22 (Linear Magnitude)

Group delay
Variable-Gain
Ultra-Wideband Voltage Amplifier

Dimensions

Specifications are subject to change without notice. Information provided herein is believed to be accurate and reliable. However, no responsibility is assumed by FEMTO Messtechnik GmbH for its use, nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of FEMTO Messtechnik GmbH. Product names mentioned may also be trademarks used here for identification purposes only.

© by FEMTO Messtechnik GmbH - Printed in Germany